Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Von Neumann regular rings: connections with functional analysis


Author: K. R. Goodearl
Journal: Bull. Amer. Math. Soc. 4 (1981), 125-134
MSC (1980): Primary 16A30, 06C20, 46L10, 46L05, 46A55
DOI: https://doi.org/10.1090/S0273-0979-1981-14865-5
MathSciNet review: 598680
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. Baer, Linear algebra and projective geometry, Academic Press, New York, 1952. MR 52795
  • 2. S. K. Berberian, The regular ring of a finite AW*-algebra, Ann. of Math. (2) 65 (1957), 224-240. MR 84743
  • 3. S. K. Berberian, N × N matrices over an A W*-algebra, Amer. J. Math. 80 (1958), 37-44. MR 98329
  • 4. S. K. Berberian, Baer *-rings, Die Grundlehren der Math. Wissenschaften, Band 195, Springer-Verlag, Berlin and New York, 1972. MR 429975
  • 5. G. Birkhoff, Combinatorial relations in projective geometries, Ann. of Math. (2) 36 (1935), 743-748. MR 1503250
  • 6. O. Bratteli, Inductive limits of finite-dimensional C*-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234. MR 312282
  • 7. E. G. Effros, D. E. Handelman, and C.-L. Shen, Dimension groups and their affine representations, Amer. J. Math. 102 (1980), 385-407. MR 564479
  • 8. G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), 29-44. MR 397420
  • 9. K. R. Goodearl, Simple regular rings and rank functions, Math. Ann. 214 (1975), 267-287. MR 409541
  • 10. K. R. Goodearl, Completions of regular rings, Math. Ann. 220 (1976), 229-252. MR 409542
  • 11. K. R. Goodearl, Completions of regular rings. II, Pacific J. Math. 72 (1977), 423-459. MR 476800
  • 12. K. R. Goodearl, Von Neumann regular rings, Pitman, London, 1979. MR 533669
  • 13. K. R. Goodearl, D. E. Handelman, and J. W. Lawrence, Affine representations of Grothendieck groups and applications to Rickart $C\sp{*} $-algebras and $\aleph \sb{0}$-continuous regular rings, Mem. Amer. Math. Soc. No. 234 (1980). MR 571998
  • 14. I. Halperin, Regular rank rings, Canad. J. Math. 17 (1965), 709-719. MR 191926
  • 15. D. Handelman, Finite Rickart C*-algebras and their properties, Studies in Analysis, Advances in Math. Supplementary Studies, Vol. 4, 1979, pp. 171-196. MR 546806
  • 16. D. Higgs, and J. Lawrence, Directed abelian groups, $C\sp{*} $-continuous rings, and Rickart C*-algebras, J. London Math. Soc. 21 (1980), 193-202. MR 575375
  • 17. I. Kaplansky, Projections in Banach algebras, Ann. of Math. (2) 53 (1951), 235-249. MR 42067
  • 18. K. Menger, New foundations of projective and affine geometry, Ann. of Math. (2) 37 (1936), 456-482. MR 1503293
  • 19. F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), 116-229. MR 1503275
  • 20. C. E. Rickart, Banach algebras with an adjoint operation, Ann. of Math. (2) 47 (1946), 528-550. MR 17474
  • 21. O. Veblen and J. W. Young, Projective geometry. Vol. I, Ginn and Co., Boston, 1910.
  • 22. J. von Neumann, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann. 102 (1929), 370-427.
  • 23. J. von Neumann, Continuous geometry, Proc. Nat. Acad. Sci. U.S.A. 22 (1936), 92-100.
  • 24. J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. U.S.A. 22 (1936), 707-713.
  • 25. J. von Neumann. Lectures on continuous geometry (Planographed notes, Institute for Advanced Study), Edwards Brothers, Ann Arbor, Michigan, 1937.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 16A30, 06C20, 46L10, 46L05, 46A55

Retrieve articles in all journals with MSC (1980): 16A30, 06C20, 46L10, 46L05, 46A55


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1981-14865-5

American Mathematical Society