Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Elliptic operators and the decomposition of tensor fields


Author: Murray Cantor
Journal: Bull. Amer. Math. Soc. 5 (1981), 235-262
MSC (1980): Primary 58G99, 35J15
DOI: https://doi.org/10.1090/S0273-0979-1981-14934-X
MathSciNet review: 628659
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR 515141
  • 2. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623-727. MR 125307
  • 3. J. Arms, A. Fischer and J. Marsden, Une approche symplectique pour des théorèmes de decomposition en géometrie ou relativité generale, C.R. Acad. Sci. Paris Sér. A 281 (1975), 517-520. MR 388447
  • 4. M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors of a Riemannian manifold, J. Differential Geom. 3 (1969), 379-392. MR 266084
  • 5. J. P. Bourguignon, D. Ebin and J. Marsden, Sur le noyau des operateurs pseudo-differential a symbole surjectif et non injectif, C.R. Acad. Sci. Paris Sér. A 282 (1975), 867-870. MR 402829
  • 6. M. Cantor, The existence of non-trivial asymptotically flat initial date for vacuum spacetimes, Comm. Math. Phys. 57 (1977), 83-96. MR 462440
  • 7. Murray Cantor, A necessary and sufficient condition for York data to specify an asymptotically flat spacetime, J. Math. Phys. 20 (1979), no. 8, 1741–1744. MR 543911, https://doi.org/10.1063/1.524259
  • 8. Murray Cantor, A necessary and sufficient condition for York data to specify an asymptotically flat spacetime, J. Math. Phys. 20 (1979), no. 8, 1741–1744. MR 543911, https://doi.org/10.1063/1.524259
  • 9. M. Cantor, Perfect fluid flows over R, J. Funct. Anal. 18 (1975), 73-84. MR 380872
  • 10. M. Cantor, Some problems of global analysis on asymptotically simple manifolds, Compositio Math. 38 (1979), no. 1, 3–35. MR 523260
  • 11. M. Cantor, Spaces of functions with asymptotic conditions, Indiana Univ. Math. J. 24 (1974), 897-902. MR 365621
  • 12. Murray Cantor and Dieter Brill, The Laplacian on asymptotically flat manifolds and the specification of scalar curvature, Compositio Math. 43 (1981), no. 3, 317–330. MR 632432
  • 13. Y. Choquet-Bruhat and D. Christodoulou, Elliptic systems in 𝐻_{𝑠,𝛿} spaces on manifolds which are Euclidean at infinity, Acta Math. 146 (1981), no. 1-2, 129–150. MR 594629, https://doi.org/10.1007/BF02392460
  • 14. Demetrios Christodoulou, The boost problem for weakly coupled quasilinear hyperbolic systems of the second order, J. Math. Pures Appl. (9) 60 (1981), no. 1, 99–130. MR 616009
  • 15. D. Ebin, The manifold of Riemannian metrics, Proc. Sympos. Pure Math., vol. 15, Amer. Math. Soc., Providence, R.I., 1970, pp. 11-40. MR 267604
  • 16. A. Fischer and J. Marsden, The initial value problem and the dynamical formulation of general relativity, General Relativity (S. Hawking and W. Israel, eds.), Cambridge Univ. Press, New York and London, 1979, pp. 138-211.
  • 17. A. Fischer and J. Marsden, Linearization stability of nonlinear partial differential equations, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R.I., 1975, pp. 219-263. MR 383456
  • 18. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1977. MR 473443
    18a. H. Helmholtz, Über Integrale der Hydrodynamischen Gleichungen, welch den Wirbelbewegungen, J. Reine Angew. Math. 55 (1858), 25-55.

    18b. V. W. Hodge, Theory and applications of harmonic integrals, 2nd ed., Cambridge Univ. Press, New York and London, 1952. MR 51571

    18c. K. Kodaira, Harmonic fields in Riemannian manifolds, Ann. of Math. (2) 50 (1949), 587-665. MR 31148

    18d. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443-492. MR 181815

  • 19. S. Lang, Differentiable manifolds, Addison-Wesley, Reading, Mass., 1972.
  • 20. Robert B. Lockhart, Fredholm properties of a class of elliptic operators on noncompact manifolds, Duke Math. J. 48 (1981), no. 1, 289–312. MR 610188
  • 21. J. Marsden, Applications of global analysis in mathematical physics, Publish or Perish, Boston, Mass., 1974. MR 646816
  • 22. Robert C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math. 32 (1979), no. 6, 783–795. MR 539158, https://doi.org/10.1002/cpa.3160320604
  • 23. Robert C. McOwen, On elliptic operators in 𝑅ⁿ, Comm. Partial Differential Equations 5 (1980), no. 9, 913–933. MR 584101, https://doi.org/10.1080/03605308008820158
  • 24. L. Nirenberg and H. Walker, Nullspaces of elliptic partial differential operators in R, J. Math. Anal. Appl. 42 (1973), 271-301. MR 320821
  • 25. R. Palais, Foundations of global non-linear analysis, Benjamin, New York, 1968. MR 248880
  • 26. R. Palais, Seminar on the Atiyah-Singer Index Theorem, Ann. of Math. Studies, no. 57, Princeton Univ. Press, Princeton, N.J., 1965. MR 198494
  • 27. M. Protter and H. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, N.J., 1967. MR 219861
  • 28. F. Warner, Foundations of differential manifolds and Lie groups, Scott, Foresman and Co., Glenview, II., 1971. MR 295244
  • 29. J. W. York, Covariant decompositions of symmetric tensors in the Theory of gravitation, Ann. Inst. H. Poincaré Sect. A (N.S.) 21 (1974), 319-332. MR 373548
  • 30. K. Yoshida, Functional analysis, 3rd ed., Springer-Verlag, New York, 1971.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 58G99, 35J15

Retrieve articles in all journals with MSC (1980): 58G99, 35J15


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1981-14934-X

American Mathematical Society