Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: J. Kevorkian and J. D. Cole
Title: Perturbation methods in applied mathematics
Additional book information: Applied Mathematical Sciences, vol. 34, Springer-Verlag, Berlin and New York, 1981, x + 558 pp., $42.00.

Author: Ali Hasan Nayfeh
Title: Introduction to perturbation techniques
Additional book information: Wiley, New York, 1981, xiv + 519 pp., $29.95.

References [Enhancements On Off] (What's this?)

  • 1. Carl M. Bender and Steven A. Orszag, Advanced mathematical methods for scientists and engineers, McGraw-Hill Book Co., New York, 1978. International Series in Pure and Applied Mathematics. MR 538168
  • 2. Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330
  • 3. George D. Birkhoff, On the asymptotic character of the solutions of certain linear differential equations containing a parameter, Trans. Amer. Math. Soc. 9 (1908), no. 2, 219–231. MR 1500810, https://doi.org/10.1090/S0002-9947-1908-1500810-1
  • 4. N. N. Bogoliubov and Y. A. Mitropolsky [1961], Asymptotic methods in the theory of non-linear oscillations, 2nd ed., Hindustan Publishing, Delhi. MR 141845
  • 5. J. R. Bowen, A. Acrivos and A. K. Oppenheim [1963], Singular perturbation refinement to quasi-steady state approximations in chemical kinetics, Chem. Eng. Sci. 18, 177-188.
  • 6. L. Brillouin [1926], Rémarques sur la méchaniques ondulatoire, J. Phys. Radium 7, 353-368.
  • 7. J. D. Buckmaster and G. S. S. Ludford, Theory of laminar flames, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge-New York, 1982. Electronic & Electrical Engineering Research Studies: Pattern Recognition & Image Processing Series, 2. MR 666866
  • 8. G. F. Carrier [1953], Boundary layer problems in applied mechanics, Advances in Applied Mechanics. III, Academic Press, New York, pp. 1-19. MR 62315
  • 9. G. F. Carrier [1974], Perturbation methods, Handbook of Applied Mathematics (C. E. Pearson, ed. ), Van Nostrand-Reinhold, New York, pp. 761-828. MR 345470
  • 10. J. D. Cole [1968], Perturbation methods in applied mathematics, Blaisdell, Waltham, Mass. MR 246537
  • 11. G. Dahlquist [1969], A numerical method for some ordinary differential equations with large Lipschitz constants, Information Processing, vol. 68 (A. J. H. Morrell, ed. ), North-Holland, Amsterdam, pp. 183-186. MR 258290
  • 12. W. Eckhaus [1973], Matched asymptotic expansions and singular perturbations, North-Holland, Amsterdam. (See review in SIAM Rev. 16 (1974), 564-565.) MR 670800
  • 13. Wiktor Eckhaus, Asymptotic analysis of singular perturbations, Studies in Mathematics and its Applications, vol. 9, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 553107
  • 14. W. Eckhaus and E. M. deJager [1982] (Proc. Conf. Singular Perturbations and Appl., Oberwolfach).
  • 15. A. Erdélyi [1961], An expansion procedure for singular perturbations, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 95, 651-672. MR 137407
  • 16. L. E. Fraenkel [1969], On the method of matched asymptotic expansions, Proc. Cambridge Philos. Soc. 65, 209-284. MR 237898
  • 17. K. O. Friedrichs [1953], Special topics in analysis, lecture notes, New York University.
  • 18. K. O. Friedrichs [1955], Asymptotic phenomena in mathematical physics, Bull. Amer. Math. Soc. 61, 367-381. MR 74614
  • 19. K. O. Friedrichs and J. J. Stoker [1941], The nonlinear boundary value problem of the buckled plate, Amer. J. Math. 63, 839-888. MR 5866
  • 20. K. O. Friedrichs and W. Wasow [1946], Singular perturbations of nonlinear oscillations, Duke Math. J. 13, 367-381. MR 18308
  • 21. A. L. Gol'denveizer [1961], Theory of elastic thin shells, Pergamon Press, New York and Oxford. MR 135763
  • 22. W. M. Greenlee and R. E. Snow [1975], Two-timing on the half line for damped oscillator equations, J. Math. Anal. Appl. 51, 394-428. MR 382798
  • 23. F. A. Howes [1978], Boundary and interior layer behavior and their interaction, Mem. Amer. Math. Soc. No. 203. MR 499407
  • 24. S. Kaplun [1957], Low Reynolds number flow past a circular cylinder, J. Math. Mech. 6, 595-603. MR 91694
  • 25. S. Kaplun [1967], Fluid mechanics and singular perturbations (P. A. Lagerstrom, L. N. Howard and C. S. Liu, eds. ), Academic Press, New York. MR 214326
  • 26. J. B. Keller [1958], A geometrical theory of diffraction, Calculus of Variations and its Applications (L. M. Graves, ed. ), McGraw-Hill, New York. MR 94120
  • 27. Joseph B. Keller, Rays, waves and asymptotics, Bull. Amer. Math. Soc. 84 (1978), no. 5, 727–750. MR 499726, https://doi.org/10.1090/S0002-9904-1978-14505-4
  • 28. J. Kevorkian [1962], The two-variable expansion procedure for the approximate solution of certain nonlinear differential equations, Report SM-42620, Douglas Aircraft, Santa Monica, Calif.; also in Space Mathematics, Part III (J. B. Rosser, ed. ), Lectures in Appl. Math., vol. 7, Amer. Math. Soc., Providence, R. I., 1966, pp. 206-275. MR 205468
  • 29. H. A. Kramers [1926], Wellenmechanik and halbzahlige Quantisierung, Z. Physik 39, 828-840.
  • 30. P. A. Lagerstrom [1976], Forms of singular asymptotic expansions in layer-type problems, Rocky Mountain J. Math. 6, 609-635. MR 430442
  • 31. Rudolph E. Langer, On the asymptotic solutions of ordinary differential equations, with an application to the Bessel functions of large order, Trans. Amer. Math. Soc. 33 (1931), no. 1, 23–64. MR 1501574, https://doi.org/10.1090/S0002-9947-1931-1501574-0
  • 32. N. Levinson [1950a], The first boundary value problem for ε∆u + A(x, y)u, Ann. of Math. (2) 51, 428-445.
  • 33. N. Levinson [1950b], Perturbations of discontinuous solutions of non-linear systems of differential equations, Acta Math. 82, 71-106. MR 35356
  • 34. J. -L. Lions [1973], Perturbation singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Math., vol. 323, Springer-Verlag, Berlin and New York. MR 600331
  • 35. James A. M. McHugh, An historical survey of ordinary linear differential equations with a large parameter and turning points, Arch. History Exact Sci. 7 (1971), no. 4, 277–324. MR 1554147, https://doi.org/10.1007/BF00328046
  • 36. Richard E. Meyer and Seymour V. Parter (eds.), Singular perturbations and asymptotics, Publication of the Mathematics Research Center, University of Wisconsin, vol. 45, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 606032
  • 37. J. J. H. Miller (ed.), Boundary and interior layers—computational and asymptotic methods, Boole Press, Dún Laoghaire, 1980. MR 589347
  • 38. W. L. Miranker [1981], Numerical methods for stiff equations, Reidel, Dordrecht.
  • 39. E. F. Mishchenko and N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Mathematical Concepts and Methods in Science and Engineering, vol. 13, Plenum Press, New York, 1980. Translated from the Russian by F. M. C. Goodspeed. MR 750298
  • 40. M. Nagumo [1939], Über das Verhalten der Integrale von λy" + f(x, y, y', λ) = 0 für λ → 0, Proc. Phys. Math. Soc. Japan 21, 529-534. MR 1085
  • 41. A. H. Nayfeh [1973], Perturbation methods, Wiley, New York. (See review in J. Fluid Mech. 63 (1974), 623.) MR 404788
  • 42. Ali Hasan Nayfeh and Dean T. Mook, Nonlinear oscillations, Wiley-Interscience [John Wiley & Sons], New York, 1979. Pure and Applied Mathematics. MR 549322
  • 43. R. E. O'Malley, Jr. [1974], Introduction to singular perturbations, Academic Press, New York. MR 402217
  • 44. R. E. O’Malley Jr., Singular perturbations and optimal control, Mathematical control theory (Proc. Conf., Australian Nat. Univ., Canberra, 1977) Lecture Notes in Math., vol. 680, Springer, Berlin, 1978, pp. 170–218. MR 515718
  • 45. L. S. Pontryagin [1961], Asymptotic behavior of the solutions of systems of differential equations with a small parameter in the higher derivatives, Amer. Math. Soc. Transl. (2) 18, 295-319. MR 124591
  • 46. L. Prandtl [1905], Über Flüssigkeits-bewegung bei kleiner Reibung, Verh. III. Int. Math.-Kongresses, Tuebner, Leipzig, pp. 484-491.
  • 47. I. Proudman and J. R. A. Pearson [1957], Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder, J. Fluid Mech. 2, 237-262. MR 86545
  • 48. E. Rothe [1939], Asymptotic solution of a boundary value poblem, Iowa State College J. Sci. 13. MR 327
  • 49. Jan A. Sanders, Second quantization and averaging: Fermi resonance, J. Chem. Phys. 74 (1981), no. 10, 5733–5736. MR 613274, https://doi.org/10.1063/1.440938
  • 50. Zeev Schuss, Theory and applications of stochastic differential equations, John Wiley & Sons, Inc., New York, 1980. Wiley Series in Probability and Statistics. MR 595164
  • 51. J. J. Stoker [1942], Mathematical problems connected with the bending and buckling of elastic plates, Bull. Amer. Math. Soc. 48, 247-261. MR 6324
  • 52. A. Tikhonov [1948], On the dependence of the solutions of differential equations on a small parameter, Mat. Sb. 22, 193-204. MR 25047
  • 53. Yü-Why Tschen, Über das Verhalten der Lösungen einer Folge von Differentialgleichungsproblemen, welche im Limes ausarten, Compositio Math. 2 (1935), 378–401 (German). MR 1556923
  • 54. M. Van Dyke [1964], Perturbation methods in fluid dynamics, Academic Press, New York. (Annotated edition, Parabolic Press, Stanford, Calif., 1975.) MR 416240
  • 55. A. B. Vasil'eva [1963], Asymptotic behavior of solutions to certain problems involving nonlinear differential equations containing a small parameter multiplying the highest derivatives, Russian Math. Surveys 18, 13-84. MR 158137
  • 56. A. B. Vasil'eva and V. F. Butuzov [1973], Asymptotic expansions of solutions of singularly perturbed equations, "Nauka", Moscow. (Russian) MR 477344
  • 57. A. B. Vasil'eva and V. M. Volosov [1967], The work of Tikhonov and his pupils on ordinary differential equations containing a small parameter, Russian Math. Surveys 22, 124-142. MR 205800
  • 58. M. I. Vishik and L. A. Lyusternik [1957], Regular degeneration and boundary layer for linear differential equations with a small parameter, Uspehi Mat. Nauk 12, 3-122. (Also Amer. Math. Soc. Transl. (2) 20 (1961), 239-364.) MR 96041
  • 59. V. M. Volosov [1962], Averaging in systems of ordinary differential equations, Russian Math. Surveys 17, 1-126. MR 146454
  • 60. W. Wasow [1941], On boundary layer problems in the theory of ordinary differential equations, doctoral dissertation, New York Univ., New York.
  • 61. W. Wasow [1944a], On the asymptotic solution of boundary value problems for ordinary differential equations containing a parameter, J. Math. and Phys. 23, 173-183. MR 10907
  • 62. W. Wasow [1944b], Asymptotic solution of boundary value problems for the differential equation $\Delta U+łambda\partial U/\partial x=łambda f(x,y)$, Duke Math. J. 11 (1944), 405-415.
  • 63. W. Wasow [1965], Asymptotic expansions for ordinary differential equations, Interscience, New York. (Reprinted by Kreiger, Huntington, 1976.) MR 203188
  • 64. G. Wentzel [1926], Eine Verallgemeinerun der Quantenbedingung für die Zwecke der Wellenmechanik, Z. Physik 38, 518-529.

Review Information:

Reviewer: R. E. O'Malley, Jr.
Journal: Bull. Amer. Math. Soc. 7 (1982), 414-420
DOI: https://doi.org/10.1090/S0273-0979-1982-15053-4
American Mathematical Society