Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF
Book Information:

Authors: J. Kevorkian and J. D. Cole
Title: Perturbation methods in applied mathematics
Additional book information: Applied Mathematical Sciences, vol. 34, Springer-Verlag, Berlin and New York, 1981, x + 558 pp., $42.00.

Author: Ali Hasan Nayfeh
Title: Introduction to perturbation techniques
Additional book information: Wiley, New York, 1981, xiv + 519 pp., $29.95.

References [Enhancements On Off] (What's this?)

  • 1. Carl M. Bender and Steven A. Orszag, Advanced mathematical methods for scientists and engineers, McGraw-Hill Book Co., New York, 1978. International Series in Pure and Applied Mathematics. MR 538168
  • 2. Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330
  • 3. George D. Birkhoff, On the asymptotic character of the solutions of certain linear differential equations containing a parameter, Trans. Amer. Math. Soc. 9 (1908), no. 2, 219–231. MR 1500810, 10.1090/S0002-9947-1908-1500810-1
  • 4. N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic methods in the theory of non-linear oscillations, Translated from the second revised Russian edition. International Monographs on Advanced Mathematics and Physics, Hindustan Publishing Corp., Delhi, Gordon and Breach Science Publishers, New York, 1961. MR 0141845
  • 5. J. R. Bowen, A. Acrivos and A. K. Oppenheim [1963], Singular perturbation refinement to quasi-steady state approximations in chemical kinetics, Chem. Eng. Sci. 18, 177-188.
  • 6. L. Brillouin [1926], Rémarques sur la méchaniques ondulatoire, J. Phys. Radium 7, 353-368.
  • 7. J. D. Buckmaster and G. S. S. Ludford, Theory of laminar flames, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge-New York, 1982. Electronic & Electrical Engineering Research Studies: Pattern Recognition & Image Processing Series, 2. MR 666866
  • 8. G. F. Carrier, Boundary layer problems in applied mechanics, Advances in Applied Mechanics, vol. 3, Academic Press Inc., New York, N. Y., 1953, pp. 1–19. MR 0062315
  • 9. Carl E. Pearson (ed.), Handbook of applied mathematics, Van Nostrand Reinhold Co., New York-Toronto-London, 1974. Selected results and methods. MR 0345470
  • 10. Julian D. Cole, Perturbation methods in applied mathematics, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1968. MR 0246537
  • 11. Germund Dahlquist, A numerical method for some ordinary differential equations with large Lipschitz constants, Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 183–186. MR 0258290
  • 12. Wiktor Eckhaus, Matched asymptotic expansions and singular perturbations, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. North-Holland Mathematics Studies, No. 6. MR 0670800
  • 13. Wiktor Eckhaus, Asymptotic analysis of singular perturbations, Studies in Mathematics and its Applications, vol. 9, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 553107
  • 14. W. Eckhaus and E. M. deJager [1982] (Proc. Conf. Singular Perturbations and Appl., Oberwolfach).
  • 15. Arthur Erdélyi, An expansion procedure for singular perturbations, Atti Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 95 (1960/1961), 651–672. MR 0137407
  • 16. L. E. Fraenkel, On the method of matched asymptotic expansions. I. A matching principle, Proc. Cambridge Philos. Soc. 65 (1969), 209–231. MR 0237898
  • 17. K. O. Friedrichs [1953], Special topics in analysis, lecture notes, New York University.
  • 18. K. O. Friedrichs, Asymptotic phenomena in mathematical physics, Bull. Amer. Math. Soc. 61 (1955), 485–504. MR 0074614, 10.1090/S0002-9904-1955-09976-2
  • 19. K. O. Friedrichs and J. J. Stoker, The non-linear boundary value problem of the buckled plate, Amer. J. Math. 63 (1941), 839–888. MR 0005866
  • 20. K. O. Friedrichs and W. R. Wasow, Singular perturbations of non-linear oscillations, Duke Math. J. 13 (1946), 367–381. MR 0018308
  • 21. A. L. Gol′denveĭzer, Theory of elastic thin shells, Translation from the Russian edited by G. Herrmann. International Series of Monographs on Aeronautics and Astronautics, Published for the American Society of Mechanical Engineers by Pergamon Press, Oxford-London-New York-Paris, 1961. MR 0135763
  • 22. W. M. Greenlee and R. E. Snow, Two-timing on the half line for damped oscillation equations, J. Math. Anal. Appl. 51 (1975), no. 2, 394–428. MR 0382798
  • 23. F. A. Howes, Boundary-interior layer interactions in nonlinear singular perturbation theory, Mem. Amer. Math. Soc. 15 (1978), no. 203, iv+108. MR 0499407
  • 24. Saul Kaplun, Low Reynolds number flow past a circular cylinder, J. Math. Mech. 6 (1957), 595–603. MR 0091694
  • 25. Fluid mechanics and singular perturbations: A collection of papers by Saul Kaplun, Edited by Paco A. Lagerstrom, Louis N. Howard and Ching-shi Liu, Academic Press, New York-London, 1967. MR 0214326
  • 26. Joseph B. Keller, A geometrical theory of diffraction, Calculus of variations and its applications. Proceedings of Symposia in Applied Mathematics, Vol. 8, For the American Mathematical Society: McGraw-Hill Book Co., Inc., New York-Toronto-London, 1958, pp. 27–52. MR 0094120
  • 27. Joseph B. Keller, Rays, waves and asymptotics, Bull. Amer. Math. Soc. 84 (1978), no. 5, 727–750. MR 499726, 10.1090/S0002-9904-1978-14505-4
  • 28. J. Kevorkian, The two variable expansion procedure of the approximate solution of certain nonlinear differential equations, Space Mathematics (Proc. Summer Seminar, Ithaca, N.Y., 1963) Amer. Math. Soc., Providence, R.I., 1966, pp. 206–275. MR 0205468
  • 29. H. A. Kramers [1926], Wellenmechanik and halbzahlige Quantisierung, Z. Physik 39, 828-840.
  • 30. Paco A. Lagerstrom, Forms of singular asymptotic expansions in layer-type problems, Rocky Mountain J. Math. 6 (1976), no. 4, 609–635. Summer Research Conference on Singular Perturbations: Theory and Applications (Northern Arizona Univ., Flagstaff, Ariz., 1975). MR 0430442
  • 31. Rudolph E. Langer, On the asymptotic solutions of ordinary differential equations, with an application to the Bessel functions of large order, Trans. Amer. Math. Soc. 33 (1931), no. 1, 23–64. MR 1501574, 10.1090/S0002-9947-1931-1501574-0
  • 32. N. Levinson [1950a], The first boundary value problem for ε∆u + A(x, y)u, Ann. of Math. (2) 51, 428-445.
  • 33. Norman Levinson, Perturbations of discontinuous solutions of non-linear systems of differential equations, Acta Math. 82 (1950), 71–106. MR 0035356
  • 34. J.-L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Mathematics, Vol. 323, Springer-Verlag, Berlin-New York, 1973 (French). MR 0600331
  • 35. James A. M. McHugh, An historical survey of ordinary linear differential equations with a large parameter and turning points, Arch. History Exact Sci. 7 (1971), no. 4, 277–324. MR 1554147, 10.1007/BF00328046
  • 36. Richard E. Meyer and Seymour V. Parter (eds.), Singular perturbations and asymptotics, Publication of the Mathematics Research Center, University of Wisconsin, vol. 45, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 606032
  • 37. J. J. H. Miller (ed.), Boundary and interior layers—computational and asymptotic methods, Boole Press, Dún Laoghaire, 1980. MR 589347
  • 38. W. L. Miranker [1981], Numerical methods for stiff equations, Reidel, Dordrecht.
  • 39. E. F. Mishchenko and N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Mathematical Concepts and Methods in Science and Engineering, vol. 13, Plenum Press, New York, 1980. Translated from the Russian by F. M. C. Goodspeed. MR 750298
  • 40. Mitio Nagumo, Über das Verhalten der Integrale von 𝜆𝑦”+𝑓(𝑥,𝑦,𝑦’,𝜆)=0 für 𝜆→0, Proc. Phys.-Math. Soc. Japan 21 (1939), 529–534 (German). MR 0001085
  • 41. Ali Hasan Nayfeh, Perturbation methods, John Wiley & Sons, New York-London-Sydney, 1973. Pure and Applied Mathematics. MR 0404788
  • 42. Ali Hasan Nayfeh and Dean T. Mook, Nonlinear oscillations, Wiley-Interscience [John Wiley & Sons], New York, 1979. Pure and Applied Mathematics. MR 549322
  • 43. Robert E. O’Malley Jr., Introduction to singular perturbations, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Applied Mathematics and Mechanics, Vol. 14. MR 0402217
  • 44. R. E. O’Malley Jr., Singular perturbations and optimal control, Mathematical control theory (Proc. Conf., Australian Nat. Univ., Canberra, 1977) Lecture Notes in Math., vol. 680, Springer, Berlin, 1978, pp. 170–218. MR 515718
  • 45. L. S. Pontryagin, Asymptotic behavior of the solutions of systems of differential equations with a small parameter in the higher derivatives, Amer. Math. Soc. Transl. (2) 18 (1961), 295–319. MR 0124591
  • 46. L. Prandtl [1905], Über Flüssigkeits-bewegung bei kleiner Reibung, Verh. III. Int. Math.-Kongresses, Tuebner, Leipzig, pp. 484-491.
  • 47. Ian Proudman and J. R. A. Pearson, Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder, J. Fluid Mech. 2 (1957), 237–262. MR 0086545
  • 48. Erich Rothe, Asymptotic solution of a boundary value problem, Iowa State Coll. J. Sci. 13 (1939), 369–372. MR 0000327
  • 49. Jan A. Sanders, Second quantization and averaging: Fermi resonance, J. Chem. Phys. 74 (1981), no. 10, 5733–5736. MR 613274, 10.1063/1.440938
  • 50. Zeev Schuss, Theory and applications of stochastic differential equations, John Wiley & Sons, Inc., New York, 1980. Wiley Series in Probability and Statistics. MR 595164
  • 51. J. J. Stoker, Mathematical problems connected with the bending and buckling of elastic plates, Bull. Amer. Math. Soc. 48 (1942), 247–261. MR 0006324, 10.1090/S0002-9904-1942-07646-4
  • 52. A. Tihonov, On the dependence of the solutions of differential equations on a small parameter, Mat. Sbornik N.S. 22(64) (1948), 193–204 (Russian). MR 0025047
  • 53. Yü-Why Tschen, Über das Verhalten der Lösungen einer Folge von Differentialgleichungsproblemen, welche im Limes ausarten, Compositio Math. 2 (1935), 378–401 (German). MR 1556923
  • 54. Milton Van Dyke, Perturbation methods in fluid mechanics, Annotated edition, The Parabolic Press, Stanford, Calif., 1975. MR 0416240
  • 55. A. B. Vasil′eva, Asymptotic behaviour of solutions of certain problems for ordinary non-linear differential equations with a small parameter multiplying the highest derivatives, Uspehi Mat. Nauk 18 (1963), no. 3 (111), 15–86 (Russian). MR 0158137
  • 56. A. B. \cyr{V}asil′eva and V. F. \cyr{B}utuzov, Asimptoticheskie razlozheniya reshenii singulyarno- vozmushchennykh uravnenii, Izdat. “Nauka”, Moscow, 1973 (Russian). MR 0477344
  • 57. A. B. Vasil′eva and V. M. Volosov, Works of A. N. Tihonov and his students in differential equations containing a small parameter, Uspehi Mat. Nauk 22 (1967), no. 2 (134), 149–168 (Russian). MR 0205800
  • 58. M. I. Višik and L. A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small parameter, Uspehi Mat. Nauk (N.S.) 12 (1957), no. 5(77), 3–122 (Russian). MR 0096041
  • 59. V. M. Volosov, Averaging in systems of ordinary differential equations, Uspehi Mat. Nauk 17 (1962), no. 6 (108), 3–126 (Russian). MR 0146454
  • 60. W. Wasow [1941], On boundary layer problems in the theory of ordinary differential equations, doctoral dissertation, New York Univ., New York.
  • 61. Wolfgang Wasow, On the asymptotic solution of boundary value problems for ordinary differential equations containing a parameter, J. Math. Phys. Mass. Inst. Tech. 23 (1944), 173–183. MR 0010907
  • 62. W. Wasow [1944b], Asymptotic solution of boundary value problems for the differential equation $\Delta U+łambda\partial U/\partial x=łambda f(x,y)$, Duke Math. J. 11 (1944), 405-415.
  • 63. Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0203188
  • 64. G. Wentzel [1926], Eine Verallgemeinerun der Quantenbedingung für die Zwecke der Wellenmechanik, Z. Physik 38, 518-529.

Review Information:

Reviewer: R. E. O'Malley, Jr.
Journal: Bull. Amer. Math. Soc. 7 (1982), 414-420