An almost-orthogonality principle with applications to maximal functions associated to convex bodies

Author:
Anthony Carbery

Journal:
Bull. Amer. Math. Soc. **14** (1986), 269-273

MSC (1985):
Primary 42B15, 42B25

DOI:
https://doi.org/10.1090/S0273-0979-1986-15436-4

MathSciNet review:
828824

Full-text PDF

References | Similar Articles | Additional Information

**1.**J. Bourgain,*On high dimensional maximal functions associated to convex bodies*(preprint). MR**868898****2.**J. Bourgain,*Maximal functions in R*(preprint).**3.**A. Carbery,*Radial Fourier multipliers and associated maximal functions*, Recent Progress in Fourier Analysis, North-Holland Math. Studies Vol. 111, 1985, 49-56. MR**848141****4.**A. Carbery,*Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem*(in preparation).**5.**H. Dappa and W. Trebels,*On maximal functions generated by Fourier multipliers*(manuscript).**6.**J. Duoandikoetxea and J. L. Rubio de Francia,*Maximal and singular integral operators via Fourier transform estimates*(preprint).**7.**C. Sogge and E. M. Stein,*Averages of functions over hypersurfaces in R*(preprint).**8.**E. M. Stein,*The development of square functions in the work of Antoni Zygmund*, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 359-376. MR**663787****9.**E. M. Stein,*Some results in harmonic analysis in*R,*for n*→ ∞, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 71-73. MR**699317****10.**E. M. Stein and J. O. Strömberg,*Behavior of maximal functions in R*, Ark Mat. 21 (1983), 259-269. MR**727348**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (1985):
42B15,
42B25

Retrieve articles in all journals with MSC (1985): 42B15, 42B25

Additional Information

DOI:
https://doi.org/10.1090/S0273-0979-1986-15436-4