Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



An almost-orthogonality principle with applications to maximal functions associated to convex bodies

Author: Anthony Carbery
Journal: Bull. Amer. Math. Soc. 14 (1986), 269-273
MSC (1985): Primary 42B15, 42B25
MathSciNet review: 828824
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. Bourgain, On high dimensional maximal functions associated to convex bodies (preprint). MR 868898
  • 2. J. Bourgain, Maximal functions in R (preprint).
  • 3. A. Carbery, Radial Fourier multipliers and associated maximal functions, Recent Progress in Fourier Analysis, North-Holland Math. Studies Vol. 111, 1985, 49-56. MR 848141
  • 4. A. Carbery, Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem (in preparation).
  • 5. H. Dappa and W. Trebels, On maximal functions generated by Fourier multipliers (manuscript).
  • 6. J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates (preprint).
  • 7. C. Sogge and E. M. Stein, Averages of functions over hypersurfaces in R (preprint).
  • 8. E. M. Stein, The development of square functions in the work of Antoni Zygmund, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 359-376. MR 663787
  • 9. E. M. Stein, Some results in harmonic analysis in R, for n → ∞, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 71-73. MR 699317
  • 10. E. M. Stein and J. O. Strömberg, Behavior of maximal functions in R, Ark Mat. 21 (1983), 259-269. MR 727348

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 42B15, 42B25

Retrieve articles in all journals with MSC (1985): 42B15, 42B25

Additional Information


American Mathematical Society