Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Almost all $p$-groups have automorphism group a $p$-group


Author: Ursula Martin
Journal: Bull. Amer. Math. Soc. 15 (1986), 78-82
MSC (1985): Primary 20E36, 20D15; Secondary 05A20, 20G40
DOI: https://doi.org/10.1090/S0273-0979-1986-15441-8
MathSciNet review: 838793
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [BK] R. Bryant and L. Kovacs, Lie representations and groups of prime power order, J. London Math. Soc. 17 (1978), 415-421. MR 506776
  • [Gr] J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-477. MR 72878
  • [Ha] P. Hall, The algebra of partitions, Proc. Fourth Canadian Math. Congress (Banff, 1957), 147-149.
  • [Hi] G. Higman, Enumerating p-groups. I, Inequalities, Proc. London Math. Soc. (3) 10 (1960), 24-30. MR 113948
  • I. G. Macdonald, Symmetric functions and Hall polynomials, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. MR 553598
  • U. H. M. Webb, The occurrence of groups as automorphisms of nilpotent 𝑝-groups, Arch. Math. (Basel) 37 (1981), no. 6, 481–498. MR 646507, https://doi.org/10.1007/BF01234386

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 20E36, 20D15, 05A20, 20G40

Retrieve articles in all journals with MSC (1985): 20E36, 20D15, 05A20, 20G40


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1986-15441-8

American Mathematical Society