Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Counting Latin rectangles


Author: Ira M. Gessel
Journal: Bull. Amer. Math. Soc. 16 (1987), 79-82
MSC (1985): Primary 05A15
DOI: https://doi.org/10.1090/S0273-0979-1987-15465-6
MathSciNet review: 866019
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. K. B. Athreya, C. R. Pranesachar, and N. M. Singhi, On the number of Latin rectangles and chromatic polynomials of L(K, European J. Combin. 1 (1980), 9-17. MR 576760
  • 2. K. P. Bogart and J. Q. Longyear, Counting 3 by n Latin rectangles, Proc. Amer. Math. Soc. 54 (1976), 463-467. MR 389618
  • 3. I. M. Gessel, Counting three-line Latin rectangles, Proc. Colloque de Combinatoire Énumérative, UQAM 1985, to be published. MR 927761
  • 4. I. P. Goulden and D. M. Jackson, Combinatorial enumeration, Wiley, 1983. MR 702512
  • 5. S. M. Jacob, The enumeration of the Latin rectangle of depth three by means of a formula of reduction, with other theorems relating to non-clashing substitutions and Latin squares, Proc. London Math. Soc. 31 (1930), 329-354.
  • 6. S. M. Kerewala, The enumeration of the Latin rectangle of depth three by means of difference equations, Bull. Calcutta Math. Soc. 33 (1941), 119-127. MR 6991
  • 7. L. Lipshitz, The diagonal of a D-finite power series is D-finite, J. Algebra (to appear). MR 929767
  • 8. J. R. Nechvatal, Asymptotic enumeration of generalized Latin rectangles, Utilitas Math. 20 (1981), 273-292. MR 639893
  • 9. R. Pranesachar, Enumeration of Latin rectangles via SDR's, Combinatorics and Graph Theory, (S. B. Rao, ed.), Lecture Notes in Math., vol. 885, Springer-Verlag, Berlin and New York, 1981, pp. 380-390. MR 655638
  • 10. J. Riordan, Three-line Latin rectangles, Amer. Math. Monthly 51 (1944), 450-452. MR 11065
  • 11. J. Riordan, Three-line Latin rectangles. II, Amer. Math. Monthly 53 (1946), 18-20. MR 14035
  • 12. J. Riordan, An introduction to combinatorial analysis, Wiley, 1958. MR 96594
  • 13. G.-C. Rota, On the foundations of combinatorial theory, I. Theory of Möbius functions, Z. Wahrsch. Verw. Gebiete 2 (1964), 340-368. MR 174487
  • 14. M.-P. Schützenberger, Contributions aux applications statistiques de la théorie de l'information, Publ. Inst. Statist. Univ. Paris 3 (1954), 5-117. MR 77816
  • 15. R. P. Stanley, Differentiably finite power series, European J. Combin. 1 (1980), 175-188. MR 587530
  • 16. D. Zeilberger, Sister Celine's technique and its generalizations, J. Math. Anal. Appl. 85 (1982), 114-145. MR 647562

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 05A15

Retrieve articles in all journals with MSC (1985): 05A15


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1987-15465-6

American Mathematical Society