Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Counting Latin rectangles


Author: Ira M. Gessel
Journal: Bull. Amer. Math. Soc. 16 (1987), 79-82
MSC (1985): Primary 05A15
DOI: https://doi.org/10.1090/S0273-0979-1987-15465-6
MathSciNet review: 866019
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. K. B. Athreya, C. R. Pranesachar, and N. M. Singhi, On the number of Latin rectangles and chromatic polynomials of 𝐿(𝐾_{𝑟,𝑠}), European J. Combin. 1 (1980), no. 1, 9–17. MR 576760, https://doi.org/10.1016/S0195-6698(80)80015-1
  • 2. K. P. Bogart and J. Q. Longyear, Counting 3 by n Latin rectangles, Proc. Amer. Math. Soc. 54 (1976), 463-467. MR 389618
  • 3. Ira M. Gessel, Counting three-line Latin rectangles, Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985) Lecture Notes in Math., vol. 1234, Springer, Berlin, 1986, pp. 106–111. MR 927761, https://doi.org/10.1007/BFb0072512
  • 4. I. P. Goulden and D. M. Jackson, Combinatorial enumeration, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. With a foreword by Gian-Carlo Rota; Wiley-Interscience Series in Discrete Mathematics. MR 702512
  • 5. S. M. Jacob, The enumeration of the Latin rectangle of depth three by means of a formula of reduction, with other theorems relating to non-clashing substitutions and Latin squares, Proc. London Math. Soc. 31 (1930), 329-354.
  • 6. S. M. Kerewala, The enumeration of the Latin rectangle of depth three by means of difference equations, Bull. Calcutta Math. Soc. 33 (1941), 119-127. MR 6991
  • 7. L. Lipshitz, The diagonal of a 𝐷-finite power series is 𝐷-finite, J. Algebra 113 (1988), no. 2, 373–378. MR 929767, https://doi.org/10.1016/0021-8693(88)90166-4
  • 8. James R. Nechvatal, Asymptotic enumeration of generalized Latin rectangles, Utilitas Math. 20 (1981), 273–292. MR 639893
  • 9. C. R. Pranesachar, Enumeration of Latin rectangles via SDRs, Combinatorics and graph theory (Calcutta, 1980) Lecture Notes in Math., vol. 885, Springer, Berlin-New York, 1981, pp. 380–390. MR 655638
  • 10. J. Riordan, Three-line Latin rectangles, Amer. Math. Monthly 51 (1944), 450-452. MR 11065
  • 11. J. Riordan, Three-line Latin rectangles. II, Amer. Math. Monthly 53 (1946), 18-20. MR 14035
  • 12. J. Riordan, An introduction to combinatorial analysis, Wiley, 1958. MR 96594
  • 13. G.-C. Rota, On the foundations of combinatorial theory, I. Theory of Möbius functions, Z. Wahrsch. Verw. Gebiete 2 (1964), 340-368. MR 174487
  • 14. M.-P. Schützenberger, Contributions aux applications statistiques de la théorie de l'information, Publ. Inst. Statist. Univ. Paris 3 (1954), 5-117. MR 77816
  • 15. R. P. Stanley, Differentiably finite power series, European J. Combin. 1 (1980), no. 2, 175–188. MR 587530, https://doi.org/10.1016/S0195-6698(80)80051-5
  • 16. Doron Zeilberger, Sister Celine’s technique and its generalizations, J. Math. Anal. Appl. 85 (1982), no. 1, 114–145. MR 647562, https://doi.org/10.1016/0022-247X(82)90029-4

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 05A15

Retrieve articles in all journals with MSC (1985): 05A15


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1987-15465-6

American Mathematical Society