Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Index theory for Toeplitz operators on bounded symmetric domains


Author: Harald Upmeier
Journal: Bull. Amer. Math. Soc. 16 (1987), 109-112
MSC (1985): Primary 47B35, 58G10; Secondary 32M15, 17C35
DOI: https://doi.org/10.1090/S0273-0979-1987-15477-2
MathSciNet review: 866026
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 0. M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos Pure Math., vol. 3, Amer. Math. Soc. Providence, R. I., 1961, pp. 7-38. MR 139181
  • 1. C. A. Berger, L. A. Coburn and A. Korányi, Opérateurs de Wiener-Hopf sur les sphères de Lie, C. R. Acad. Sci. Paris 290 (1980), 989-991. MR 584284
  • 2. L. G. Brown, R. G. Douglas and P. A. Fillmore, Extensions of C* -algebras and K-homology, Ann. of Math. 105 (1977), 265-324. MR 458196
  • 3. L. Boutet de Monvel, On the index of Toeplitz operators of several complex variables, Invent. Math. 50 (1979), 249-272. MR 520928
  • 4. M. D. Choi and E. G. Effros, The completely positive lifting problem, Ann. of Math. (2) 104 (1976), 585-609. MR 417795
  • 5. A. Dynin, Inversion problem for singular integral operators: C* -approach, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 4668-4670. MR 507929
  • 6. G. G. Kasparov, The operator K-functor and extensions of C* -algebras, Izv. Akad. Nauk SSSR Ser. Mat, 44 (1980), 571-636. MR 582160
  • 7. O. Loos, Bounded symmetric domains and Jordan pairs, Univ. of California, Irvine, 1977.
  • 8. W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969), 61-80. MR 259164
  • 9. H. Upmeier, Toeplitz operators on bounded symmetric domains, Trans. Amer. Math. Soc. 280 (1983), 221-237. MR 712257
  • 10. H. Upmeier, Toeplitz C*-algebras on bounded symmetric domains, Ann. of Math. (2) 119 (1984), 549-576. MR 744863
  • 11. H. Upmeier, Generalized Fredholm indices for Toeplitz operators on symmetric domains, preprint. MR 752791
  • 12. U. Venugopalkrishna, Fredholm operators associated with strongly pseudoconvex domains, J. Funct. Anal. 9 (1972), 349-373. MR 315502

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 47B35, 58G10, 32M15, 17C35

Retrieve articles in all journals with MSC (1985): 47B35, 58G10, 32M15, 17C35


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1987-15477-2

American Mathematical Society