Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Enrico Giusti
Title: Minimal surfaces and functions of bounded variation
Additional book information: Monographs in Mathematics, Vol. 80, Birkhäuser, Boston-Basel-Stuttgart, 1984, xii + 240 pp., $39.95. ISBN 0-8176-3153-4.

References [Enhancements On Off] (What's this?)

  • William K. Allard and Frederick J. Almgren Jr. (eds.), Geometric measure theory and the calculus of variations, Proceedings of Symposia in Pure Mathematics, vol. 44, American Mathematical Society, Providence, RI, 1986. MR 840266
  • [FH] H. Federer, Geometric measure theory, Springer-Verlag, Berlin, Heidelberg, New York, 1969. MR 257325
  • [FF] H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458-520. MR 123260
  • [NJ] J. C. C. Nitsche, Vorlesungen über Minimal Flächen, Springer-Verlag, Berlin, Heidelberg, New York, 1975. MR 448224
  • Robert Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, Inc., New York, 1986. MR 852409
  • [RE] E. R. Reifenberg, Solution of the Plateau Problem for m-dimensional surfaces of varying topological type, Acta Mathematica 104 (1960), 1-92. MR 114145
  • Leon Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. (2) 118 (1983), no. 3, 525–571. MR 727703, https://doi.org/10.2307/2006981
  • Brian White, Existence of least-area mappings of 𝑁-dimensional domains, Ann. of Math. (2) 118 (1983), no. 1, 179–185. MR 707165, https://doi.org/10.2307/2006958
  • Brian White, Mappings that minimize area in their homotopy classes, J. Differential Geom. 20 (1984), no. 2, 433–446. MR 788287

Review Information:

Reviewer: F. Almgren
Journal: Bull. Amer. Math. Soc. 16 (1987), 167-171
DOI: https://doi.org/10.1090/S0273-0979-1987-15502-9
American Mathematical Society