Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Stable harmonic 2-spheres in symmetric spaces


Authors: F. Burstall, J. Rawnsley and S. Salamon
Journal: Bull. Amer. Math. Soc. 16 (1987), 274-278
MSC (1985): Primary 58E20; Secondary 53C35, 53C42
DOI: https://doi.org/10.1090/S0273-0979-1987-15516-9
MathSciNet review: 876963
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. F. Burstall and J. Rawnsley, Twistors, harmonic maps and homogeneous geometry (to appear).
  • 2. J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. MR 164306
  • 3. N. Ejiri, The index of minimal immersions of S, Math. Z. 184 (1983), 127-132. MR 711733
  • 4. W. B. Gordon, Convex functions and harmonic maps, Proc. Amer. Math. Soc. 33 (1972), 433-437. MR 291987
  • 5. A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121-138. MR 87176
  • 6. R. Howard and S. W. Wei, Non-existence of stable harmonic maps to and from certain homogeneous spaces and submanifolds of Euclidean space, Trans. Amer. Math. Soc. 294 (1986), 319-331. MR 819950
  • 7. J. L. Koszul and B. Malgrange, Sur certaines structures fibrés complexes, Arch. Math. 9 (1958), 102-109. MR 131882
  • 8. P. F. Leung, On the stability of harmonic maps, Lecture Notes in Math., vol. 949, Springer-Verlag, Berlin and New York, 1982, pp. 122-129. MR 673586
  • 9. A. Lichnerowicz, Applications harmoniques et variétés Kähleriennes, Symposia Math. 3 (1970), 341-402. MR 262993
  • 10. M. J. Micallef, On the topology of positively curved manifolds (preprint).
  • 11. J. D. Moore, Compact Riemannian manifolds with positive curvature operators, Bull. Amer. Math. Soc. 14 (N.S.) (1986), 279-282. MR 828826
  • 12. Y. Ohnita, Stability of harmonic maps and standard minimal immersions, Tôhoku Math. J. 38 (1986), 259-267. MR 843811
  • 13. A. Pluzhnikov, On the minimum of the Dirichlet functional (to appear) (Russian)
  • 14. J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2 -spheres, Ann. of Math. (2) 113 (1981), 1-24. MR 604040
  • 15. Y.-T. Siu, Some remarks on the complex-analyticity of harmonic maps, Southeast Asian Bull. Math. 3 (1979), 240-253. MR 564815
  • 16. Y.-T. Siu and S.-T. Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), 189-204. MR 577360
  • 17. R. T. Smith, The second variation formula for harmonic mappings, Proc. Amer. Math. Soc. 47 (1975), 229-236. MR 375386
  • 18. A. V. Tyrin, Critical points of the multidimensional Dirichlet functional, Mat. Sb. 124 (1984), 146-158. (Russian) MR 743062
  • 19. J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033-1047. MR 185554
  • 20. W. Zakrzewski, Classical solutions of two-dimensional Grassmannian models, J. Geom. Phys. 1 (1984), 39-63. MR 794979

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 58E20, 53C35, 53C42

Retrieve articles in all journals with MSC (1985): 58E20, 53C35, 53C42


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1987-15516-9

American Mathematical Society