Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Conformal geometry and complete minimal surfaces


Author: Rob Kusner
Journal: Bull. Amer. Math. Soc. 17 (1987), 291-295
MSC (1985): Primary 53A10, 49F10, 57R42
MathSciNet review: 903735
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. T. Banchoff, Triple points and surgery of immersed surfaces, Proc. Amer. Math. Soc. 46 (1974), 407-413. MR 377897
  • 2. R. Bryant, A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984), 23-53. MR 772125
  • 3. R. Bryant, Personal communication, 1985.
  • 4. C. Costa, Imersões minimas completas em R, Doctoral thesis, IMPA, Rio de Janeiro, Brasil, 1982.
  • 5. G. Francis, Some equivariant eversions of the sphere (privately circulated manuscript), 1977.
  • 6. D. Hoffman and W. Meeks III, Complete embedded minimal surfaces of finite total curvature, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 134-136. MR 766971
  • 7. L. Jorge and W. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), 203-221. MR 683761
  • 8. R. Kusner, Complete minimal surfaces by minimizing ∫ H2 (lecture notes), 1984.
  • 9. R. Kusner, Comparison surfaces for the Willmore problem, Pacific J. Math. (to appear). MR 996204
  • 10. H. B. Lawson, Lectures on minimal submanifolds. I, Publish or Perish, Berkeley, 1980.
  • 11. P. Li and S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982), 269-291. MR 674407
  • 12. W. Meeks III, The classification of complete minimal surfaces in R3 with total curvature greater than $-8\pi $, Duke Math. J. 48 (1981), 523-535. MR 630583
  • 13. R. Osserman, Global properties of complete minimal surfaces in E3 and E, Ann. of Math. (2) 80 (1964), 340-364. MR 151907
  • 14. R. Schoen, Uniqueness, symmetry and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), 791-809. MR 730928
  • 15. M. Spivak, A comprehensive introduction to differential geometry. IV, Publish or Perish, Berkeley, 1975.
  • 16. D. Hoffman and W. Meeks III, The classical theory of minimal surfaces (in preparation).
  • 17. N. Korevaar, R. Kusner and B. Solomon, The structure of complete embedded surfaces with constant mean curvature (preprint), 1987. MR 1010168

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 53A10, 49F10, 57R42

Retrieve articles in all journals with MSC (1985): 53A10, 49F10, 57R42


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1987-15564-9