Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF

Book Information

Author: Gerd Grubb
Title: Functional calculus of pseudo-differential boundary problems
Additional book information Progress in Mathematics, vol. 65, Birkhäuser, Boston, Basel, Stuttgart, 1986, vi + 511 pp., $49.00. ISBN 0-8176-3349-9.


References [Enhancements On Off] (What's this?)

  • M. F. Atiyah, 𝐾-theory, Lecture notes by D. W. Anderson, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0224083 (36 #7130)
  • [BdM1] Louis Boutet de Monvel, Comportement d'un opérateur pseudo-differentiel sur une variété à bord. I, II J. d'Analyse Math. 71 (1966), 241-253; 255-304.
  • Louis Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math. 126 (1971), no. 1-2, 11–51. MR 0407904 (53 #11674)
  • H. O. Cordes, Pseudo-differential operators on a half-line, J. Math. Mech. 18 (1968/69), 893–908. MR 0435935 (55 #8886)
  • G. I. Eskin, Boundary value problems for elliptic pseudodifferential equations, Translations of Mathematical Monographs, vol. 52, American Mathematical Society, Providence, R.I., 1981. Translated from the Russian by S. Smith. MR 623608 (82k:35105)
  • G. I. Èskin, Boundary value problems and the parametrix for elliptic systems of pseudodifferential equations, Trudy Moskov. Mat. Obšč. 28 (1973), 75–116 (Russian). MR 0365237 (51 #1490)
  • Stephan Rempel and Bert-Wolfgang Schulze, Parametrices and boundary symbolic calculus for elliptic boundary problems without the transmission property, Math. Nachr. 105 (1982), 45–149. MR 670511 (84a:58083), http://dx.doi.org/10.1002/mana.19821050105
  • [V-E1] M. I. Vishik and G. I. Eskin, Convolution equations in a bounded domain, Russian Math. Surveys 20 (1965), no. 3, 85-151.
  • [V-E2] M. I. Vishik and G. I. Eskin, Normally solvable problems for elliptic systems of convolution equations, Math. USSR-Sb. (1967), 303-330.


Review Information

Reviewer: Gregory Eskin
Journal: Bull. Amer. Math. Soc. 19 (1988), 349-352
DOI: http://dx.doi.org/10.1090/S0273-0979-1988-15671-6
PII: S 0273-0979(1988)15671-6