Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: David A. Vogan Jr.
Title: Unitary representations of reductive Lie groups
Additional book information: Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, N. J., 1987, x + 308 pp., $60.00 cloth, $19.50 paper. ISBN 0-691-08481-5, ISBN 0-691-08482-3.

References [Enhancements On Off] (What's this?)

  • 1. Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
  • 2. Michel Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta Math. 149 (1982), no. 3-4, 153–213 (French). MR 688348, https://doi.org/10.1007/BF02392353
  • 3. Mogens Flensted-Jensen, Analysis on non-Riemannian symmetric spaces, CBMS Regional Conference Series in Mathematics, vol. 61, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 837420
  • 4. Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
  • 5. Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239
  • 6. Anthony W. Knapp, Lie groups, Lie algebras, and cohomology, Mathematical Notes, vol. 34, Princeton University Press, Princeton, NJ, 1988. MR 938524
  • 7. Henrik Schlichtkrull, Hyperfunctions and harmonic analysis on symmetric spaces, Progress in Mathematics, vol. 49, Birkhäuser Boston, Inc., Boston, MA, 1984. MR 757178
  • 8. V. S. Varadarajan, Harmonic analysis on real reductive groups, Lecture Notes in Mathematics, Vol. 576, Springer-Verlag, Berlin-New York, 1977. MR 0473111
  • 9. David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR 632407
  • 10. David A. Vogan Jr., The unitary dual of 𝐺𝐿(𝑛) over an Archimedean field, Invent. Math. 83 (1986), no. 3, 449–505. MR 827363, https://doi.org/10.1007/BF01394418
  • 11. Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
  • 12. Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 188. MR 0498999
  • 13. G. J. Zuckerman, Construction of representations via derived functors, Lectures at Institute for Advanced Study, Princeton, N. J., Spring 1978.

Review Information:

Reviewer: A. W. Knapp
Journal: Bull. Amer. Math. Soc. 21 (1989), 380-384
DOI: https://doi.org/10.1090/S0273-0979-1989-15872-2