Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The jump is definable in the structure of the degrees of unsolvability


Author: S. Barry Cooper
Journal: Bull. Amer. Math. Soc. 23 (1990), 151-158
MSC (1985): Primary 03D30
DOI: https://doi.org/10.1090/S0273-0979-1990-15923-3
MathSciNet review: 1027898
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. M. Arslanov, Structural properties of the degrees below0’, Dokl. Akad. Nauk. SSSR, (new series) 283 (2) (1985), 270-273.
  • 2. S. B. Cooper, The strong anticupping property for recursively enumerable degrees, J. Symbolic Logic 54 (1989), 527-539. MR 997886
  • 3. S. B. Cooper, A jump class of noncappable degrees, J. Symbolic Logic 54 (1989), 324-353. MR 997870
  • 4. S. B. Cooper and R. L. Epstein, Complementing below recursively enumerable degrees, Ann. Pure Appl. Logic 34 (1987), 15-32. MR 887552
  • 5. S. B. Cooper, S. Lempp, and P. Watson, Weak density and cupping in the d-r.e. degrees, Israel J. Math. 67 (1989), 137-152. MR 1026559
  • 6. S. B. Cooper, L. Harrington, A. H. Lachlan, S. Lempp, and R. I. Soare, The d-r.e. degrees are not dense (in preparation).
  • 7. R. L. Epstein, Degrees of unsolvability: Structure and theory, Lecture Notes in Mathematics No. 759, Springer-Verlag, Berlin, Heidelberg, New York, 1979. MR 551620
  • 8. L. Feiner, The strong homogeneity conjecture, J. Symbolic Logic 35 (1970), 375-377. MR 286655
  • 9. L. Harrington and R. A. Shore, Definable degrees and automorphisms of D, Bull. Amer. Math. Soc. (new series) 4 (1981), 97-100. MR 590819
  • 10. C. G. Jockusch, Jr. and R. A. Shore, Pseudo jump operators I: The R.E. case, Trans. Amer. Math. Soc. 275 (1983), 599-609. MR 682720
  • 11. C. G. Jockusch, Jr. and R. A. Shore, Pseudo jump operatorsII: Transfinite iterations, hierarchies, and minimal covers, J. Symbolic Logic 49 (1984), 1205-1236. MR 771789
  • 12. C. G. Jockusch, Jr. and S. G. Simpson, A degree theoretic definition of the ramified analytic hierarchy, Ann. Math. Logic 10 (1976), 1-32. MR 491098
  • 13. C. G. Jockusch, Jr. and R. M. Solovay, Fixed points of jump preserving automorphisms of degrees, Israel J. Math. 26 (1977), 91-94. MR 432434
  • 14. S. C. Kleene and E. L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379-407. MR 61078
  • 15. A. H. Lachlan, A recursively enumerable degree which will not split over all lesser ones, Ann. Math. Logic 9 (1975), 307-365. MR 409150
  • 16. A. H. Lachlan and R. Lebeuf, Countable initial segments of the degrees of unsolvability, J. Symbolic Logic 41 (1976), 289-300. MR 403937
  • 17. M. Lerman, Initial segments of the degrees of unsolvability, Ann. of Math. (2) 93 (1971), 365-389. MR 307893
  • 18. M. Lerman, Degrees of unsolvability, Springer-Verlag, Berlin, Heidelberg, New York City, Tokyo, 1983. MR 708718
  • 19. A. Nerode and R. A. Shore, Second order logic and first order theories of reducibility orderings, The Kleene Symposium (J. Barwise et al., eds.), North-Holland, Amsterdam, 1980, pp. 181-200. MR 591882
  • 20. A. Nerode and R. A. Shore, Reducibility orderings: theories, definability and automorphisms, Ann. Math. Logic 18 (1980), 61-89. MR 568916
  • 21. P. Odifreddi, Classical recursion theory, North-Holland, Amsterdam, New York, Oxford, 1989. MR 982269
  • 22. D. Posner and R. W. Robinson, Degrees joining to0', J. Symbolic Logic 46(1981), 714-722. MR 641485
  • 23. E. L.Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284-316. MR 10514
  • 24. L. J. Richter, On automorphisms of the degrees that preserve jumps, Israel J.Math. 32(1979), 27-31. MR 531597
  • 25. H. Rogers, Jr., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967. MR 224462
  • 26. R. A. Shore, On homogeneity and definability in the first order theory of the Turing degrees, J. Symbolic Logic 47 (1982), 8-16. MR 644748
  • 27. R. A. Shore, A non-inversion theorem for the jump operator, Ann. Pure Appl. Logic 40 (1988), 277-303. MR 973483
  • 28. R. A. Shore, Defining jump classes in the degrees below0', Proc. Amer. Math. Soc. 104 (1988), 287-292. MR 958085
  • 29. S. G. Simpson, First order theory of the degrees of unsolvability, Ann. of Math. (2) 105 (1977), 121-139. MR 432435
  • 30. T. A. Slaman and R. A. Shore, Working below a low2 recursively enumerable degree (to appear).
  • 31. T. A. Slaman and R. A. Shore, Working below a high recursively enumerable degree (in preparation).
  • 32. T. A. Slaman and J. Steel, Complementation in the Turing degrees, J. Symbolic Logic 54 (1989), 160-176. MR 987329
  • 33. T. A. Slaman and W. H. Woodin, Definability in the Turing degrees, Illinois J. Math. 30 (1986), 320-334. MR 840131
  • 34. R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Berlin, Heidelberg, New York, London, 1987. MR 882921
  • 35. C. E. M. Yates, Initial segments and implications for the structure of degrees, Conference in Mathematical Logic, London, 1970 (W. Hodges, ed.), Springer-Verlag, Berlin, Heidelberg, New York, 1972. MR 357095

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 03D30

Retrieve articles in all journals with MSC (1985): 03D30


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1990-15923-3

American Mathematical Society