Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

$L^p \to L^{p'}$ estimates for time-dependent Schrödinger operators


Authors: J. L. Journé, A. Soffer and C. D. Sogge
Journal: Bull. Amer. Math. Soc. 23 (1990), 519-524
MSC (1985): Primary 35J10
DOI: https://doi.org/10.1090/S0273-0979-1990-15967-1
MathSciNet review: 1035837
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. P. Constantin and J. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), 431-439. MR 928265
  • 2. A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions results in L2(R), m ≥ 5, Duke Math. J. 47 (1980), 57-80. MR 563367
  • 3. A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions results in L2(R4), J. Math. Anal. Appl. 101 (1984), 397-422. MR 748579
  • 4. A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J. 46 (1979), 583-611. MR 544248
  • 5. C. E. Kenig and C. D. Sogge, A note on unique continuation for Schrödinger's operator, Proc. Amer. Math. Soc. 103 (1988), 543-546. MR 943081
  • 6. A. Melin, Intertwining methods in multi-dimensional scattering theory I, University of Lund and Lund Institute of Technology preprint series, 1987:13.
  • 7. J. Rauch, Local decay of scattering solutions to Schrödinger's equation, Comm. Math. Phys. 61 (1978), 149-168. MR 495958
  • 8. M. Reed and B. Simon, Methods of modern mathematical Physics, vol. III, Academic Press, New York, 1979. MR 751959
  • 9. P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715. MR 904948
  • 10. A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering theory for nonintegral equations, Comm. Math. Phys. (to appear). MR 1034551
  • 11. W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal. 41 (1981), 110-133; Sequel, 43(1981), 281-293. MR 614228
  • 12. R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714. MR 512086
  • 13. L. Vega, Schrödinger equations: Pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874-878. MR 934859

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 35J10

Retrieve articles in all journals with MSC (1985): 35J10


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1990-15967-1

American Mathematical Society