Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

${\text{PSL}}_2 \left( q \right)$ and extensions of ${\mathbf{Q}}\left( x \right)$


Author: Helmut Völklein
Journal: Bull. Amer. Math. Soc. 24 (1991), 145-153
MSC (1985): Primary 11G35, 12F10, 14E20, 14G05, 20B25, 20C25
DOI: https://doi.org/10.1090/S0273-0979-1991-15972-0
MathSciNet review: 1060151
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [RGTY] M. Aschbacher et al., (eds.), Proceedings of the Rutgers group theory year 1983/84, Cambridge Univ. Press, 1984.
  • [CP] J. H. Conway and R. A. Parker, On the Hurwitz number of arrays of group elements, preprint.
  • [Fr1] M. D. Fried, Fields of definition of function fields and Hurwitz families -groups as Galois groups, Comm. Algebra 5 (1977), 17-82. MR 453746
  • [Fr2] M. D. Fried, Arithmetic of 3 and 4 branch point covers, Adv. in Math., Birk-häuser, 1989, pp. 1-33. MR 1006477
  • [FrTh] M. D. Fried and J. G. Thompson, The Hurwitz monodromy group H(4) and modular curves, preprint.
  • [FrVo] M. D. Fried and Helmut Völklein, The inverse Galois problem and rational points on moduli spaces, preprint. MR 1119950
  • [F1] W. Feit, Rigidity of ${\rm Aut}({\rm PSL}\sb 2(p\sp 2))$, $p\equiv±2$ $({\rm mod}\,5),\;p\not= 2$, Proceedings of the Rutgers Group Theory Year 1983/84 (M. Aschbacher et. al., eds.), Cambridge Univ. Press, 1984.
  • [F2] W. Feit, Some finite groups with non-trivial centers which are Galois groups, Proceedings of the 1987 Singapore Group Theory Conference De Gruyter, 1989, pp. 87-109. MR 981836
  • [FF] W. Feit and P. Fong, Rational rigidity of G2(p) for any prime p > 5, Proceedings of the Rutgers Group Theory Year 1983/84 (M. Aschbacher et al., eds.), Cambridge Univ. Press, 1984, pp. 323-326. MR 817266
  • [HS] G. Hoyden-Siedersleben, Realisierung der Jankogruppen J1 und J2 als Galoisgruppen über Q, J. Algebra 97 (1985), 14-22. MR 812166
  • [Hu] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967. MR 224703
  • [Hunt] D. C. Hunt, Rational rigidity and the sporadic groups, J. Algebra 99 (1986), 577-592. MR 837564
  • [Malle1] G. Malle, Exceptional groups of Lie type as Galois groups, J. Reine Angew. Math. 392 (1988), 70-109. MR 965058
  • [Malle2] G. Malle, Some unitary groups as Galois groups over Q, preprint. MR 1058559
  • [Malle3] G. Malle, Realisierung von Gruppen PSL2(q) and SL2(q) als Galoisgruppen über Q, Diplomarbeit, Karlsruhe, 1984.
  • [MM] G. Malle and B. H. Matzat Realisierung von Gruppen PSL2(F) als Galoisgruppen über Q, Math. Annalen 272 (1985), 549-565. MR 807290
  • [Ma1] B. H. Matzat, Konstruktive Galoistheorie, Lecture Notes in Math., vol. 1284, Springer-Verlag, Berlin and New York, 1987. MR 1004467
  • [Ma2] B. H. Matzat, Zwei Aspekte konstruktiver Galoistheorie, J. Algebra 96 (1985), 499-531. MR 810543
  • [Sh] K. Shih, On the construction of Galois extensions of function fields and number fields, Math. Annalen 207 (1974), 99-120. MR 332725
  • [Th1] J. G. Thompson, Some finite groups which appear as ${\rm Gal}\,L/K$, where $K\subseteq Q(µ\sbn)$, J. Algebra 89 (1984), 437-449.
  • [Th2] J. G. Thompson, PSL3 and Galois groups over Q, Proceedings of the Rutgers Group Theory Year 1983/84 (M. Aschbacher et al., eds.), Cambridge Univ. Press, pp. 309-319. MR 817264
  • [Th3] J. G. Thompson, Primitive roots and rigidity, Proceedings of the Rutgers Group Theory Year 1983/84 (M. Aschbacher et al., eds.), Cambridge Univ. Press, pp. 327-350. MR 817267
  • [Th4] J. G. Thompson, Rational rigidity of G2 (5), Proceedings of the Rutgers Group Theory Year 1983/84 (M. Aschbacher et al., eds.), Cambridge Univ. Press, pp. 321-322. MR 817265

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 11G35, 12F10, 14E20, 14G05, 20B25, 20C25

Retrieve articles in all journals with MSC (1985): 11G35, 12F10, 14E20, 14G05, 20B25, 20C25


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1991-15972-0

American Mathematical Society