Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

A period mapping in universal Teichmüller space


Author: Subhashis Nag
Journal: Bull. Amer. Math. Soc. 26 (1992), 280-287
MSC (2000): Primary 32G20; Secondary 30F60, 32G15, 81S10, 81T30
DOI: https://doi.org/10.1090/S0273-0979-1992-00273-2
MathSciNet review: 1121571
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In previous work it had been shown that the remarkable homogeneous space $ M = \operatorname{Diff}({S^1})/{\text{PSL}}(2,\mathbb{R})$ sits as a complex analytic and Kähler submanifold of the Universal Teichmüller Space. There is a natural immersion $ \prod $ of M into the infinite-dimensional version (due to Segal) of the Siegel space of period matrices. That map $ \prod $ is proved to be injective, equivariant, holomorphic, and Kähler-isometric (with respect to the canonical metrics). Regarding a period mapping as a map describing the variation of complex structure, we explain why $ \prod $ is an infinite-dimensional period mapping.


References [Enhancements On Off] (What's this?)

  • [1] M. Bowick, The geometry of string theory, 8th Workshop on Grand Unification, Syracuse, NY 1987. MR 1024369 (90j:81171)
  • [2] M. Bowick and A. Lahiri, The Ricci curvature of $ {\operatorname{Diff}}({S^1})/{\text{SL}}(2,R)$, Syracuse Univ. Prepr. SU-4238-377 (Feb. 1988).
  • [3] M. Bowick and S. Rajeev, String theory as the Kähler geometry of loop space, Phys. Rev. Lett. 58(1987), 535-538. MR 873068 (89a:22034a)
  • [4] -, The holomorphic geometry of closed bosonic string, Nuclear Phys. B 293 (1987), 348-384. MR 908048 (89a:81085)
  • [5] P. Griffiths, Periods of integrals on algebraic manifolds, Bull. Amer. Math. Soc. 75 (1970), 228-296. MR 0258824 (41:3470)
  • [6] -, Periods of integrals on algebraic manifolds III, Publ. Math. IHES, vol. 38, 1970.
  • [7] D. Hong and S. Rajeev, Universal Teichmüller space and $ {\operatorname{Diff}}({S^1})/{S^1}$, Comm. Math. Phys. 135(1991), 401-411. MR 1087390 (92g:32042)
  • [8] Y. Katznelson, S. Nag, and D. Sullivan, On conformal welding homeomorphisms associated to Jordan curves, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), 293-306. MR 1087337 (92e:30009)
  • [9] S. Nag, Canonical measures on the moduli spaces of compact Riemann surfaces, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 103-111. MR 1013533 (91f:14023)
  • [10] -, Non-perturbative string theory and the diffeomorphism group of the circle, Proc. Internat. Sympos. Topological and Geometrical Methods in Field Theory, Turku, Finland 1991 (J. Mickelsson, ed.), World Scientific (to appear).
  • [11] -, The complex analytic theory of Teichmüller spaces, John Wiley, Interscience, New York, 1988.
  • [12] S. Nag and A. Verjovsky, $ {\operatorname{Diff}}({S^1})$ and the Teichmüller spaces, Comm. Math. Phys. 130 (1990), 123-138. In two Parts. Part I by S. N. and A. V.; Part II by S. N. MR 1055689 (91g:58037)
  • [13] G. Segal, Unitary representations of some infinite dimensional groups, Comm. Math. Phys. 80 (1981), 301-342. MR 626704 (82k:22004)
  • [14] G. Segal and G. Wilson, Loop groups and equations of KdV type, Publ. Math. IHES, vol. 61, 1985. MR 783348 (87b:58039)
  • [15] C. L. Siegel, Symplectic geometry, Academic Press, New York, 1964. MR 0164063 (29:1362)
  • [16] E. Witten, Coadjoint orbits of the Virasoro group, Comm. Math. Phys. 114 (1981), 1-53. MR 925520 (89c:22038)
  • [17] B. Zumino, The geometry of the Virosoro group for physicists, Cargese 1987 (R. Gastmans, ed.), Plenum Press, New York.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 32G20, 30F60, 32G15, 81S10, 81T30

Retrieve articles in all journals with MSC (2000): 32G20, 30F60, 32G15, 81S10, 81T30


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1992-00273-2
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society