A period mapping in universal Teichmüller space

Author:
Subhashis Nag

Journal:
Bull. Amer. Math. Soc. **26** (1992), 280-287

MSC (2000):
Primary 32G20; Secondary 30F60, 32G15, 81S10, 81T30

DOI:
https://doi.org/10.1090/S0273-0979-1992-00273-2

MathSciNet review:
1121571

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In previous work it had been shown that the remarkable homogeneous space sits as a complex analytic and Kähler submanifold of the Universal Teichmüller Space. There is a natural immersion of *M* into the infinite-dimensional version (due to Segal) of the Siegel space of period matrices. That map is proved to be injective, equivariant, holomorphic, and Kähler-isometric (with respect to the canonical metrics). Regarding a period mapping as a map describing the variation of complex structure, we explain why is an infinite-dimensional period mapping.

**[1]**M. Bowick,*The geometry of string theory*, 8th Workshop on Grand Unification, Syracuse, NY 1987. MR**1024369 (90j:81171)****[2]**M. Bowick and A. Lahiri,*The Ricci curvature of*, Syracuse Univ. Prepr. SU-4238-377 (Feb. 1988).**[3]**M. Bowick and S. Rajeev,*String theory as the Kähler geometry of loop space*, Phys. Rev. Lett.**58**(1987), 535-538. MR**873068 (89a:22034a)****[4]**-,*The holomorphic geometry of closed bosonic string*, Nuclear Phys. B**293**(1987), 348-384. MR**908048 (89a:81085)****[5]**P. Griffiths,*Periods of integrals on algebraic manifolds*, Bull. Amer. Math. Soc.**75**(1970), 228-296. MR**0258824 (41:3470)****[6]**-,*Periods of integrals on algebraic manifolds III*, Publ. Math. IHES, vol. 38, 1970.**[7]**D. Hong and S. Rajeev,*Universal Teichmüller space and*, Comm. Math. Phys.**135**(1991), 401-411. MR**1087390 (92g:32042)****[8]**Y. Katznelson, S. Nag, and D. Sullivan,*On conformal welding homeomorphisms associated to Jordan curves*, Ann. Acad. Sci. Fenn. Ser. A I Math.**15**(1990), 293-306. MR**1087337 (92e:30009)****[9]**S. Nag,*Canonical measures on the moduli spaces of compact Riemann surfaces*, Proc. Indian Acad. Sci. Math. Sci.**99**(1989), 103-111. MR**1013533 (91f:14023)****[10]**-,*Non-perturbative string theory and the diffeomorphism group of the circle*, Proc. Internat. Sympos. Topological and Geometrical Methods in Field Theory, Turku, Finland 1991 (J. Mickelsson, ed.), World Scientific (to appear).**[11]**-,*The complex analytic theory of Teichmüller spaces*, John Wiley, Interscience, New York, 1988.**[12]**S. Nag and A. Verjovsky,*and the Teichmüller spaces*, Comm. Math. Phys.**130**(1990), 123-138. In two Parts. Part I by S. N. and A. V.; Part II by S. N. MR**1055689 (91g:58037)****[13]**G. Segal,*Unitary representations of some infinite dimensional groups*, Comm. Math. Phys.**80**(1981), 301-342. MR**626704 (82k:22004)****[14]**G. Segal and G. Wilson,*Loop groups and equations of KdV type*, Publ. Math. IHES, vol. 61, 1985. MR**783348 (87b:58039)****[15]**C. L. Siegel,*Symplectic geometry*, Academic Press, New York, 1964. MR**0164063 (29:1362)****[16]**E. Witten,*Coadjoint orbits of the Virasoro group*, Comm. Math. Phys.**114**(1981), 1-53. MR**925520 (89c:22038)****[17]**B. Zumino,*The geometry of the Virosoro group for physicists*, Cargese 1987 (R. Gastmans, ed.), Plenum Press, New York.

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (2000):
32G20,
30F60,
32G15,
81S10,
81T30

Retrieve articles in all journals with MSC (2000): 32G20, 30F60, 32G15, 81S10, 81T30

Additional Information

DOI:
https://doi.org/10.1090/S0273-0979-1992-00273-2

Article copyright:
© Copyright 1992
American Mathematical Society