Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



A characterization of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere

Authors: Craig D. Hodgson, Igor Rivin and Warren D. Smith
Journal: Bull. Amer. Math. Soc. 27 (1992), 246-251
MSC (2000): Primary 52B12; Secondary 51M10, 52A55, 68U05
MathSciNet review: 1149872
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a characterization of convex polyhedra in $ {H^3}$ in terms of their dihedral angles, developed by Rivin. We also describe some geometric and combinatorial consequences of that theory. One of these consequences is a combinatorial characterization of convex polyhedra in $ {E^3}$ all of whose vertices lie on the unit sphere. That resolves a problem posed by Jakob Steiner in 1832.

References [Enhancements On Off] (What's this?)

  • [1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The design and analysis of computer algorithms, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Second printing; Addison-Wesley Series in Computer Science and Information Processing. MR 0413592
  • [2] A. D. Aleksandrov, An application of the theorem of invariance of domain to existence proofs, Izv. Akad. Nauk SSSR Sci. Mat. 3 (1939), 243-255. (Russian; English Summary)
  • [3] A. D. Aleksandrov, The intrinsic metric of a convex surface in a space of constant curvature, Dokl. Acad. Sci. SSSR 45 (1944), 3-6.
  • [4] A. D. Alexandrov, Convex polyhedra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. Translated from the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze and A. B. Sossinsky; With comments and bibliography by V. A. Zalgaller and appendices by L. A. Shor and Yu. A. Volkov. MR 2127379
  • [5] E. M. Andreev, Convex polyhedra in Lobačevskiĭ spaces, Mat. Sb. (N.S.) 81 (123) (1970), 445–478 (Russian). MR 0259734
  • [6] E. M. Andreev, Convex polyhedra of finite volume in Lobačevskiĭ space, Mat. Sb. (N.S.) 83 (125) (1970), 256–260 (Russian). MR 0273510
  • [7] Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777
  • [8] A. L. Cauchy, Sur les polygones et polyèdres, 2nd memoir, J. École Polytech. 19 (1813), 87-98.
  • [9] Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved problems in geometry, Problem Books in Mathematics, Springer-Verlag, New York, 1991. Unsolved Problems in Intuitive Mathematics, II. MR 1107516
  • [10] M. Dillencourt and Warren D. Smith, Graph-theoretic aspects of inscribability, in preparation.
  • [11] Michael B. Dillencourt, Toughness and Delaunay triangulations, Discrete Comput. Geom. 5 (1990), no. 6, 575–601. MR 1067787,
  • [12] Pasquale Joseph Federico, Descartes on polyhedra, Sources in the History of Mathematics and Physical Sciences, vol. 4, Springer-Verlag, New York-Berlin, 1982. A study of the De solidorum elementis. MR 680214
  • [13] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981), no. 2, 169–197. MR 625550,
  • [14] Branko Grünbaum, Convex polytopes, With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. MR 0226496
  • [15] Craig D. Hodgson, Deduction of Andreev’s theorem from Rivin’s characterization of convex hyperbolic polyhedra, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 185–193. MR 1184410
  • [16] Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
  • [17] Igor Rivin, On geometry of convex ideal polyhedra in hyperbolic 3-space, Topology 32 (1993), no. 1, 87–92. MR 1204408,
  • [18] Igor Rivin, On geometry of convex polyhedra in hyperbolic 3-space, PhD thesis, Princeton Univ., June 1986.
  • [19] Igor Rivin, Intrinsic geometry of convex polyhedra in hyperbolic 3-space, submitted.
  • [20] Igor Rivin, Some applications of the hyperbolic volume formula of Lobachevsky and Milnor, submitted.
  • [21] Craig D. Hodgson and Igor Rivin, A characterization of compact convex polyhedra in hyperbolic 3-space, Invent. Math. 111 (1993), no. 1, 77–111. MR 1193599,
  • [22] Igor Rivin, A characterization of ideal polyhedra in hyperbolic 3-space, Ann. of Math. (2) 143 (1996), no. 1, 51–70. MR 1370757,
  • [23] Jakob Steiner, Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von einander, Reimer, Berlin, 1832; Appeared in J. Steiner's Collected Works, 1881.
  • [24] J. J. Stoker, Geometrical problems concerning polyhedra in the large, Comm. Pure Appl. Math. 21 (1968), 119–168. MR 0222765,
  • [25] William P. Thurston, Geometry and topology of 3-manifolds, Lecture notes, Princeton Univ., 1978.
  • [26] Pravin M. Vaidya, A new algorithm for minimizing convex functions over convex sets, IEEE Sympos. Foundations of Computer Science, October 1989, pp. 338-343.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 52B12, 51M10, 52A55, 68U05

Retrieve articles in all journals with MSC (2000): 52B12, 51M10, 52A55, 68U05

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society