Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

On the Burnside problem on periodic groups


Author: Sergei V. Ivanov
Journal: Bull. Amer. Math. Soc. 27 (1992), 257-260
MSC (2000): Primary 20F50; Secondary 20E05, 20F05
DOI: https://doi.org/10.1090/S0273-0979-1992-00305-1
MathSciNet review: 1149874
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that the free m-generated Burnside groups $ \mathbb{B}(m,n)$ of exponent n are infinite provided that $ m > 1$, $ n \geq {2^{48}}$.


References [Enhancements On Off] (What's this?)

  • [1] S. I. Adian, The Burnside problems and identities in groups, Moscow, Nauka, 1975. MR 0432770 (55:5753)
  • [2] W. Burnside, On unsettled question in the theory of discontinuous groups, Quart. J. Pure Appl. Math. 33 (1902), 230-238.
  • [3] E. S. Golod, On nil-algebras and finitely residual groups, Izv. Akad. Nauk SSSR. Ser. Mat. 28 (1964), 273-276. MR 0161878 (28:5082)
  • [4] M. Hall, Solution of the Burnside problem for exponent 6, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 751-753. MR 0089847 (19:728f)
  • [5] S. V. Ivanov, Free Burnside groups of some even exponents, 1987 (unpublished).
  • [6] S. V. Ivanov and A. Yu. Ol'shanskiĭ, Some applications of graded diagrams in combinatorial group theory, London Math. Soc. Lecture Note Ser., vol. 160 (1991), Cambridge Univ. Press, Cambridge and New York, 1991, 258-308. MR 1123985 (92j:20022)
  • [7] R. C. Lyndon and P. C. Schupp, Combinatorial group theory, Springer-Verlag, Heidelberg, 1977. MR 0577064 (58:28182)
  • [8] P. S. Novikov, On periodic groups, Dokl. Akad. Nauk SSSR Ser. Mat. 27 (1959), 749-752. MR 0106950 (21:5680)
  • [9] P. S. Novikov and S. I. Adian, On infinite periodic groups I, II, III, Izv. Akad. Nauk SSSR. Ser. Mat. 32 (1968), 212-244; 251-524; 709-731. MR 0240178 (39:1532a)
  • [10] A. Yu. Ol'shanskiĭ, On the Novikov-Adian theorem, Mat. Sb. 118 (1982), 203-235.
  • [11] -, Geometry of defining relations in groups, Moscow, Nauka, 1989. MR 1024791 (91i:20035)
  • [12] I. N. Sanov, Solution of the Burnside problem for exponent 4, Uchen. Zap. Leningrad State Univ. Ser. Mat. 10 (1940), 166-170. MR 0003397 (2:212c)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 20F50, 20E05, 20F05

Retrieve articles in all journals with MSC (2000): 20F50, 20E05, 20F05


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1992-00305-1
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society