Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Stephen Wiggins
Title: Chaotic transport in dynamical systems
Additional book information: Springer-Verlag, New York, 1992, 301 pp., US$39.95. ISBN 0-387-97522-5.

References [Enhancements On Off] (What's this?)

  • [1] C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971), 35-59. MR 0279830 (43:5551)
  • [2] M. Davis and R. Skodje, Chemical reactions as problems in nonlinear dynamics, Advances in Classical Trajectory Methods, JAI Press Inc., Greenwich, Connecticut, 1992.
  • [3] R. Easton, J. Meiss, and S. Carver, Exit times and transport for symplectic twist maps, preprint, 1992. MR 1222985 (94g:58070)
  • [4] R. W. Easton, Isolating blocks and epsilon chains for maps, Physica D 39 (1989), 95-110. MR 1021184 (90m:58176)
  • [5] -, Transport through chaos, Nonlinearity 4 (1991), 583-590. MR 1107020 (92d:58103)
  • [6] -, Transport of phase space volume near isolated invariant sets, preprint 1992.
  • [7] M. Gruebele and A. Zewail, Ultrafast reaction dynamics, Physics Today, May 1990, 24-33.
  • [8] M. Gutzwiller, Chaos in classical and quantum mechanics, Springer-Verlag, New York, 1990. MR 1077246 (91m:58099)
  • [9] R. Levine and R. Bernstein, Molecular reaction dynamics, Oxford Univ. Press, London and New York, 1987.
  • [10] R. MacKay, Flux over a saddle, Phys. Lett. A 145 (1991), 425-427. MR 1052866 (91b:58073)
  • [11] R. S. MacKay, J. D. Meiss, and I. C. Percival, Resonances in area preserving maps, Phys. D 27 (1987), 1-20. MR 912848 (89h:58158)
  • [12] D. Truhlar, W. Hase, and J. Hynes, Transition state theory, J. Phys. Chem. 87 (1983).
  • [13] E. Wigner, J. Chem. Phys. 5 (1937).
  • [14] Focus issue on periodic orbit theory, Chaos, vol. 2, no. 1 (1992).

Review Information:

Reviewer: Robert W. Easton
Journal: Bull. Amer. Math. Soc. 28 (1993), 398-402
DOI: https://doi.org/10.1090/S0273-0979-1993-00373-2
American Mathematical Society