Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Harmonic analysis of fractal measures induced by representations of a certain $ C\sp *$-algebra


Authors: Palle E. T. Jorgensen and Steen Pedersen
Journal: Bull. Amer. Math. Soc. 29 (1993), 228-234
MSC (2000): Primary 46L55; Secondary 28A80, 42C05
DOI: https://doi.org/10.1090/S0273-0979-1993-00428-2
MathSciNet review: 1215311
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a class of measurable subsets $ \Omega $ in $ {\mathbb{R}^d}$ such that $ {L^2}(\Omega )$ has an orthogonal basis of frequencies $ {e_\lambda }(x) = {e^{i2\pi \bullet x}}(x \in \Omega )$ indexed by $ \lambda \in \Lambda \subset {\mathbb{R}^d}$. We show that such spectral pairs $ (\Omega ,\Lambda )$ have a self-similarity which may be used to generate associated fractal measures $ \mu $ with Cantor set support. The Hilbert space $ {L^2}(\mu )$ does not have a total set of orthogonal frequencies, but a harmonic analysis of $ \mu $ may be built instead from a natural representation of the Cuntz $ {{\text{C}}^{\ast}}$-algebra which is constructed from a pair of lattices supporting the given spectral pair $ (\Omega ,\Lambda )$. We show conversely that such a pair may be reconstructed from a certain Cuntz-representation given to act on $ {L^2}(\mu )$.


References [Enhancements On Off] (What's this?)

  • [BR] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, vol. I, revised ed., Springer-Verlag, New York, 1987. MR 887100 (88d:46105)
  • [Cu] J. Cuntz, $ {C^{\ast}}$-Algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185. MR 0467330 (57:7189)
  • [Fa] K. J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, London and New York, 1985. MR 867284 (88d:28001)
  • [Fu] B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101-121. MR 0470754 (57:10500)
  • [Hu] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747. MR 625600 (82h:49026)
  • [JP1] P. E. T. Jorgensen and S. Pedersen, Spectral theory for Borel sets in $ {\mathbb{R}^n}$ of finite measure, J. Funct. Anal. 107 (1992), 72-104. MR 1165867 (93k:47005)
  • [JP2] -, Sur un problème spectral algébrique, C. R. Acad. Sci. Paris Sér. I Math 312 (1991), 495-498.
  • [JP3] -, Spectral duality for $ {C^{\ast}}$-algebras and fractal measures, in preparation.
  • [St1] R. S. Strichartz, Self-similar measures and their Fourier transforms. I, II, Indiana Univ. Math. J. 39 (1990), 797-817; II, Trans. Amer. Math. Soc. 336 (1993), 335-361. MR 1078738 (92k:42015)
  • [St2] -, Fourier asymptotics of fractal measures, J. Funct. Anal. 89 (1990), 154-187. MR 1040961 (91m:42015)
  • [St3] -, Wavelets and self-affine tilings, Constr. Approx. 9 (1993), 327-346. MR 1215776 (94f:42039)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 46L55, 28A80, 42C05

Retrieve articles in all journals with MSC (2000): 46L55, 28A80, 42C05


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1993-00428-2
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society