Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Joseph H. Silverman and John T. Tate
Title: Rational points on elliptic curves
Additional book information: Undergraduate Texts in Mathematics, Springer-Verlag, New York and Berlin, 1992 (first ed.\ 1989), x+281 pp., US$29.95. ISBN 0-387-97825-9.

References [Enhancements On Off] (What's this?)

  • [1] J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, Survey article, J. London Math. Soc. 41 (1966), 193-291. MR 0199150 (33:7299)
  • [2] -, Lectures on elliptic curves, Cambridge Univ. Press, Cambridge and New York, 1991. MR 1144763 (92k:11058)
  • [3] J. Chahal, Topics in number theory, Plenum Press, New York and London, 1988. MR 955797 (89m:11001)
  • [4] D. A. Cox, Primes of the form $ {x^2} + n{y^2}$ : Fermat, class field theory, and complex multiplication, Wiley, New York, 1989. MR 1028322 (90m:11016)
  • [5] J. E. Cremona, Algorithms for modular elliptic curves, Cambridge Univ. Press, Cambridge and New York, 1992. MR 1201151 (93m:11053)
  • [6] S. Fermigier, Un exemple de courbe elliptique définie sur Q de rang $ \geq 19$, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 719-722. MR 1183810 (93i:11067)
  • [7] G. Frey, Links between stable elliptic curves and certain diophantine equations, Ann. Univ. Sarav. Ser. Math. 1 (1986), 1-40. MR 853387 (87j:11050)
  • [8] A. Granville, On the Kummer-Wieferich-Skula approach to the first case of Fermat's Last Theorem, Advances in Number Theory (F. Q. Gouvêa and N. Yui, eds.), Clarendon Press, Oxford, 1993, pp. 479-498. MR 1368443 (96m:11020)
  • [9] A. Granville and M. B. Monagan, The first case of Fermat's last theorem is true for all prime exponents up to 714,591,416,091,389, Trans. Amer. Math. Soc. 306 (1988), 329-359. MR 927694 (89g:11025)
  • [10] B. H. Gross, Kolyvagin's work on modular elliptic curves, London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 235-256. MR 1110395 (93c:11039)
  • [11] B. H. Gross and D. B. Zagier, Heegner points and the derivatives of L-series, Invent. Math. 84 (1986), 225-320. MR 833192 (87j:11057)
  • [12] D. Husemöller, Elliptic curves, Graduate Texts in Math., vol. 111, Springer-Verlag, Berlin and New York, 1987. MR 868861 (88h:11039)
  • [13] K. F. Ireland and M. I. Rosen, A classical introduction to modern number theory, Graduate Texts in Math., vol. 84, second ed., Springer-Verlag, Berlin and New York, 1990. MR 1070716 (92e:11001)
  • [14] A. W. Knapp, Elliptic curves, Math. Notes, vol. 40, Princeton Univ. Press, Princeton, NJ, 1992.
  • [15] N. Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Math., vol. 97, Springer-Verlag, Berlin and New York, 1984. MR 766911 (86c:11040)
  • [16] V. Kolyvagin, Euler systems, Prog. in Math., vol. 87, Birkhäuser, Boston, 1990, pp. 435-483. MR 1106906 (92g:11109)
  • [17] S. Lang, Elliptic curves diophantine analysis, Grundlehren der Math. Wiss., vol. 231, Springer-Verlag, Berlin and New York, 1978. MR 518817 (81b:10009)
  • [18] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987), 649-673. MR 916721 (89g:11125)
  • [19] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33-186. MR 488287 (80c:14015)
  • [20] -, Number theory as gadfly, Amer. Math. Monthly 98 (1991), 593-610. MR 1121312 (92f:11077)
  • [21] K. A. Ribet, On modular representations of $ \mathrm{Gal}(\bar{\textbf{Q}}/\textbf{Q})$ arising from modular forms, Invent. Math. 100 (1990), 431-476. MR 1047143 (91g:11066)
  • [22] -, From the Taniyama-Shimura Conjecture to Fermat's Last Theorem, Ann. Fac. Sci. Toulouse Math. (5) 11 (1990), 116-139. MR 1191476 (93j:11035)
  • [23] J. P. Serre, Lettre à J. F. Mestre, 13 août 1985, Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 263-268. MR 902597 (88m:11039)
  • [24] -, Sur les représentations modulaires de degré 2 de $ \mathrm{Gal}(\bar{\textbf{Q}}/\textbf{Q})$, Duke Math. J. 54 (1987), 179-230. MR 885783 (88g:11022)
  • [25] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math., vol. 106, Springer-Verlag, Berlin and New York, 1986. MR 817210 (87g:11070)
  • [26] J. W. Tanner and S. S. Wagstaff, Jr., New bounds for the first case of Fermat's Last Theorem, Math. Comp. 53 (1989), 743-750. MR 982371 (90h:11028)
  • [27] J. T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179-206. MR 0419359 (54:7380)
  • [28] M. Waldschmidt et al., eds., From number theory to physics (Lectures given at the meeting "Number Theory and Physics" held at the Centre de Physique, Les Houches, 1989), Springer-Verlag, Berlin and New York, 1992. MR 1221099 (93m:11001)
  • [29] A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149-156. MR 0207658 (34:7473)
  • [30] A. Wiles, Modular elliptic curves and Fermat's Last Theorem (to appear).

Review Information:

Reviewer: William R. Hearst III
Reviewer: Kenneth A. Ribet
Journal: Bull. Amer. Math. Soc. 30 (1994), 248-252
DOI: https://doi.org/10.1090/S0273-0979-1994-00465-3
American Mathematical Society