Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Wiener's Tauberian theorem in $ L_1(G//K)$ and harmonic functions in the unit disk


Authors: Y. Ben Natan, Y. Benyamini, H. Hedenmalm and Y. Weit
Journal: Bull. Amer. Math. Soc. 32 (1995), 43-49
MSC: Primary 43A80; Secondary 46H99
DOI: https://doi.org/10.1090/S0273-0979-1995-00554-9
MathSciNet review: 1273399
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Our main result is to give necessary and sufficient conditions, in terms of Fourier transforms, on a closed ideal I in $ {L^1}(G//K)$, the space of radial integrable functions on $ G = SU(1,1)$, so that $ I = {L^1}(G//K)$ or $ I = L_0^1(G//K)$--the ideal of $ {L^1}(G//K)$ functions whose integral is zero. This is then used to prove a generalization of Furstenberg's theorem which characterizes harmonic functions on the unit disk by a mean value property and a "two circles" Morera type theorem (earlier announced by Agranovskiĭ).


References [Enhancements On Off] (What's this?)

  • [1] M. G. Agranovskiĭ, Tests for holomorphy in symmetric domains, Siberian Math. J. 22 (1981), 171-179.
  • [2] A. A. Borichev and H. Hedenmalm, Approximation in a class of Banach algebras of quasi-analytically smooth analytic functions, J. Funct. Anal. 115 (1993), 359-390. MR 1234396 (95a:46075)
  • [3] Y. Benyamini and Y. Weit, Harmonic analysis of spherical functions on $ SU(1,1)$, Ann. Inst. Fourier (Grenoble) 42 (1992), 671-694. MR 1182644 (94d:43009)
  • [4] T. Carleman, L'integrale de Fourier et questions qui s'y rattachent, Uppsala, Sweden, 1944. MR 0014165 (7:248c)
  • [5] Y. Domar, On the analytic transform of bounded linear functionals on certain Banach algebras, Studia Math. 53 (1975), 429-440. MR 0383003 (52:3885)
  • [6] L. Ehrenpreis and F. I. Mautner, Some properties of the Fourier transform on semi simple Lie groups. I, Ann. of Math. (2) 61 (1955), 406-439. MR 0069311 (16:1017b)
  • [7] -, Some properties of the Fourier transform on semi simple Lie groups. III, Trans. Amer. Math. Soc. 90 (1959), 431-484. MR 0102755 (21:1541)
  • [8] H. Furstenberg, A Poisson formula for semi simple groups, Ann. of Math. (2) 77 (1963), 335-386. MR 0146298 (26:3820)
  • [9] -, Boundaries of Riemannian symmetric spaces, Symmetric Spaces (W. M. Boothby and G. L. Weiss, eds.), Marcel Dekker Inc., New York, 1972, pp. 359-377. MR 0438048 (55:10969)
  • [10] H. Hedenmalm, On the primary ideal structure at infinity for analytic Beurling algebras, Ark. Mat. 23 (1985), 129-158. MR 800176 (87d:46056)
  • [11] S. Helgason, Groups and geometric analysis, Academic Press, New York, 1984. MR 754767 (86c:22017)
  • [12] M. Kac, A remark on Wiener's Tauberian theorem, Proc. Amer. Math. Soc. 16 (1965), 1155-1157. MR 0185320 (32:2788)
  • [13] P. Koosis, The logarithmic integral, Cambridge University Press, London, 1988. MR 961844 (90a:30097)
  • [14] S. Lang, $ SL_{2}(R)$, Addison-Wesley, Reading, MA, 1975. MR 0430163 (55:3170)
  • [15] N. N. Lebedev, Special functions and their applications, Prentice-Hall, Englewood Cliffs, NJ, 1965. MR 0174795 (30:4988)
  • [16] H. Leptin, Ideal theory in group algebras of locally compact groups, Invent. Math. 31 (1976), 259-278. MR 0399344 (53:3189)
  • [17] W. Magnus, F. Oberhettinger, and R. P. Rosi, Formulas and theorems for the special functions of mathematical physics, Springer-Verlag, New York, 1966. MR 0232968 (38:1291)
  • [18] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and series, Gordon and Breach, New York, 1990. MR 1054647 (91c:33001)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC: 43A80, 46H99

Retrieve articles in all journals with MSC: 43A80, 46H99


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1995-00554-9
Keywords: Spherical functions, $ SU(1,1)$, Resolvent transform, Spectral synthesis, Wiener's theorem, $ \mu $-harmonic functions, two circles theorems
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society