Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Not all free arrangements are $ K(\pi,1)$


Authors: Paul H. Edelman and Victor Reiner
Journal: Bull. Amer. Math. Soc. 32 (1995), 61-65
MSC: Primary 52B30; Secondary 55P20
DOI: https://doi.org/10.1090/S0273-0979-1995-00557-4
MathSciNet review: 1273396
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We produce a one-parameter family of hyperplane arrangements that are counterexamples to the conjecture of Saito that the complexified complement of a free arrangement is $ K(\pi,1)$. These arrangements are the restriction of a one-parameter family of arrangements that arose in the study of tilings of certain centrally symmetric octagons. This other family is discussed as well.


References [Enhancements On Off] (What's this?)

  • [Ar] V. I. Arnold, The cohomology ring of the colored braid group, Mat. Zametki 5 (1969), 227-231; Math. Notes, vol. 5, Princeton Univ. Press, Princeton, NJ, 1969, pp. 138-140. MR 0242196 (39:3529)
  • [Br] E. Brieskorn, Sur les groupe de tresses, Séminaire Bourbaki 1971/72, Lecture Notes in Math., vol. 317, Springer, New York, 1973, pp. 21-44. MR 0422674 (54:10660)
  • [De] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302. MR 0422673 (54:10659)
  • [ER] P. H. Edelman and V. Reiner, Free arrangements and tilings, preprint, 1994.
  • [FaN] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118. MR 0141126 (25:4537)
  • [FR] M. Falk and R. Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985), 77-88. MR 808110 (87c:32015b)
  • [FoN] R. H. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126. MR 0150755 (27:742)
  • [Ha] A. Hattori, Topology of $ {\mathbb{C}^n}$ minus a finite number of affine hyperplanes in general position, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), 205-219. MR 0379883 (52:788)
  • [Hu] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, 1990. MR 1066460 (92h:20002)
  • [OS] P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189. MR 558866 (81e:32015)
  • [OT] P. Orlik and H. Terao, Arrangements of hyperplanes, Springer-Verlag, Berlin, 1992. MR 1217488 (94e:52014)
  • [Ra] R. Randell, Lattice-isotopic arrangements are topologically isomorphic, Proc. Amer. Math. Soc. 107 (1989), 555-559. MR 984812 (90a:57032)
  • [Sa] K. Saito, On the uniformization of complements of discriminant loci, Conference Notes, Summer Institute, Amer. Math. Soc., Williamstown, 1975.
  • [Te] H. Terao, Modular elements of lattices and topological fibrations, Adv. in Math. 62 (1986), 135-154. MR 865835 (88b:32032)
  • [Yu] S. Yuzvinsky, Free and locally free arrangements with a given intersection lattice, Proc. Amer. Math. Soc. 118 (1993), 745-752. MR 1160307 (93i:52022)
  • [Zi] G. Ziegler, Combinatorial constructions of logarithmic differential forms, Adv. in Math. 76 (1989), 116-154. MR 1004488 (90j:32016)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC: 52B30, 55P20

Retrieve articles in all journals with MSC: 52B30, 55P20


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1995-00557-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society