Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Secondary invariants and the singularity of the Ruelle zeta-function in the central critical point


Author: Andreas Juhl
Journal: Bull. Amer. Math. Soc. 32 (1995), 80-87
MSC: Primary 58F17; Secondary 11F72, 58F20
DOI: https://doi.org/10.1090/S0273-0979-1995-00570-7
MathSciNet review: 1284776
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Ruelle zeta-function of the geodesic flow on the sphere bundle $ S(X)$ of an even-dimensional compact locally symmetric space X of rank 1 is a meromorphic function in the complex plane that satisfies a functional equation relating its values in s and -s. The multiplicity of its singularity in the central critical point s = 0 only depends on the hyperbolic structure of the flow and can be calculated by integrating a secondary characteristic class canonically associated to the flow-invariant foliations of $ S(X)$ for which a representing differential form is given.


References [Enhancements On Off] (What's this?)

  • [1] N. Berline, E. Getzler, and M. Vergne, Heat kernel and Dirac operators, Springer, Berlin, 1992. MR 1215720 (94e:58130)
  • [2] A. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb. (3), vol. 93, Springer, Berlin, 1978. MR 496885 (80c:53044)
  • [3] U. Bunke and M. Olbrich, Theta and zeta functions for locally symmetric spaces of rank one, preprint SFB 288, Berlin, 1994. MR 1303182 (95g:58253)
  • [4] D. Collingwood, Representations of rank one Lie groups, Pitman Res. Notes Math. Ser., vol. 137, Pitman, Boston, 1985. MR 853731 (88c:22014)
  • [5] D. Fried, The zeta functions of Ruelle and Selberg. I, Ann. Sci. École Norm. Sup. (4) 19 (1986), 491-517. MR 875085 (88k:58134)
  • [6] -, Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. Math. 84 (1986), 523-540. MR 837526 (87g:58118)
  • [7] R. Gangolli, Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one, Illinois J. Math. 21 (1977), 1-41. MR 0485702 (58:5524)
  • [8] C. Godbillon and J. Vey, Un invariant de feuilletages de codimension 1, C. R. Acad. Sci. Paris 273 (1971), 92-95. MR 0283816 (44:1046)
  • [9] S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Inst. Hautes Études Sci. Publ. Math. (1990), 5-61. MR 1087392 (92b:58179)
  • [10] H. Hecht and W. Schmid, Characters, asymptotics and n-homology of Harish-Chandra modules, Acta Math. 151 (1983), 49-151. MR 716371 (84k:22026)
  • [11] A. Juhl, On the functional equation of dynamical theta functions, preprint IAAS, Berlin, 1993.
  • [12] -, Zeta-Funktionen, Indextheorie und hyperbolische Dynamik, Thesis, Humboldt-Universität, Berlin, 1993.
  • [13] M. Kanai, Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations, Ergodic Theory Dynamical Systems 8 (1988), 215-239. MR 951270 (89k:58230)
  • [14] D. Ruelle, Zeta functions for expanding maps and Anosov flows, Invent. Math. 34 (1976), 231-242. MR 0420720 (54:8732)
  • [15] S. Seifarth, Kohomologische Untersuchungen dynamischer Zeta-Funktionen, Thesis, Humboldt-Universität, Berlin, 1994.
  • [16] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87. MR 0088511 (19:531g)
  • [17] M. Wakayama, Zeta functions of Selberg's type associated with homogeneous vector bundles, Hiroshima Math. J. 15 (1985), 235-295. MR 805055 (86m:22026)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC: 58F17, 11F72, 58F20

Retrieve articles in all journals with MSC: 58F17, 11F72, 58F20


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1995-00570-7
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society