Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Chi-tai Chuang
Title: Normal families of meromorphic functions
Additional book information: World Scientific, Singapore, 1993, xi+473 pp., US$68.00. ISBN 981-02-1257-7.

Author: Joel L. Schiff
Title: Normal families
Additional book information: Springer, New York, 1993, ix+236 pp., US$39.00. ISBN 0-387-97967-0.

References [Enhancements On Off] (What's this?)

  • [1] Daniel S. Alexander, A history of complex dynamics: From Schroder to Fatou and Julia, Vierweg, Braunschweig, 1994. MR 1260930 (95d:01014)
  • [2] Walter Bergweiler and Alexandre Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana (to appear). MR 1344897 (96h:30055)
  • [3] W. Bergweiler and W. H. J. Fuchs, On the zeros of the second derivative of real entire functions, J. Anal. 1 (1993), 73-79. MR 1230507 (94m:30051)
  • [4] A. Bloch, La conception actuelle de la théorie des fonctions entirés et méromorphes, Enseign. Math. 25 (1926), 83-103.
  • [5] Y. Gu [Ku], A criterion for normality of families of meromorphic functions, Sci. Sinica 1 (special issue) (1979), 267-274. (Chinese) MR 662205 (83i:30047)
  • [6] W. K. Hayman, Research problems in function theory, Athlone Press, London, 1964. MR 0217268 (36:359)
  • [7] E. Hille, Analytic function theory, Vol. 2, Ginn, Boston, 1962. MR 0201608 (34:1490)
  • [8] S. Lang, Introduction to complex hyperbolic spaces, Springer, New York, 1987. MR 886677 (88f:32065)
  • [9] P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927.
  • [10] I. B. Oshkin, On a test of normality of families of analytic families, Math. Surveys 37 (1982), 237-238. MR 650781 (83f:30026)
  • [11] Xue-Cheng Pang, Bloch's principle and normal criterion, Sci. China Ser. A 32 (1989), 782-791. MR 1057999 (91i:30031)
  • [12] -, On normal criterion of meromorphic functions, Sci. China Ser. A 33 (1990), 521-527. MR 1070538 (92b:30041)
  • [13] W. Schwick, Normality criteria for families of meromorphic functions, J. Anal. Math. 52 (1989), 241-289. MR 981504 (90k:30061)
  • [14] -, Repelling periodic points in the Julia set, Bull. London. Math. Soc. (to appear). MR 1435565 (97m:30029)
  • [15] L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), 813-817. MR 0379852 (52:757)
  • [16] -, Normal families revisited, Complex Analysis and Related Topics (J. J. O. O. Wiegerinck, ed.), Univ. of Amsterdam, Amsterdam, 1993, pp. 149-164.

Review Information:

Reviewer: David Drasin
Journal: Bull. Amer. Math. Soc. 32 (1995), 257-261
DOI: https://doi.org/10.1090/S0273-0979-1995-00573-2
American Mathematical Society