Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)


Mappings with integrable dilatation in higher dimensions

Authors: Juan J. Manfredi and Enrique Villamor
Journal: Bull. Amer. Math. Soc. 32 (1995), 235-240
MSC: Primary 30C65; Secondary 35J70
MathSciNet review: 1313107
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {F \in W_{{\text{loc}}}^{1,n}(\Omega ;{\mathbb{R}^n})}$ be a mapping with nonnegative Jacobian $ {{J_F}(x) = \det DF(x) \geq 0}$ for a.e. x in a domain $ {\Omega \subset {\mathbb{R}^n}}$. The dilatation of F is defined (almost everywhere in $ {\Omega}$) by the formula

$\displaystyle K(x) = \frac{{\vert DF(x){\vert^n}}}{{{J_F}(x)}}.$

Iwaniec and Šverák [IS] have conjectured that if $ {p \geq n - 1}$ and $ {K \in L_{loc}^p(\Omega )}$ then F must be continuous, discrete and open. Moreover, they have confirmed this conjecture in the two-dimensional case n = 2. In this article, we verify it in the higher-dimensional case $ {n \geq 2}$ whenever $ {p > n - 1}$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC: 30C65, 35J70

Retrieve articles in all journals with MSC: 30C65, 35J70

Additional Information

PII: S 0273-0979(1995)00583-5
Keywords: Quasiregular mappings, degenerate elliptic equations, nonlinear elasticity
Article copyright: © Copyright 1995 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia