Mappings with integrable dilatation in higher dimensions
Authors:
Juan J. Manfredi and Enrique Villamor
Journal:
Bull. Amer. Math. Soc. 32 (1995), 235-240
MSC:
Primary 30C65; Secondary 35J70
DOI:
https://doi.org/10.1090/S0273-0979-1995-00583-5
MathSciNet review:
1313107
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a mapping with nonnegative Jacobian
for a.e. x in a domain
. The dilatation of F is defined (almost everywhere in
) by the formula





- [B1] Ball, J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337-403. MR 0475169 (57:14788)
- [B2] -, Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 315-328. MR 616782 (83f:73017)
- [BI]
Bojarski, B. V. and Iwaniec, T., Analytic foundations of the theory of quasiconformal mappings in
, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257-324. MR 731786 (85h:30023)
- [DS] Donaldson, S. and Sullivan, D., Quasiconformal 4-manifolds, Acta Math. 163 (1989), 181-252. MR 1032074 (91d:57012)
- [HK] Heinonen J. and Koskela, P., Sobolev mappings with integrable dilatation, Arch. Rational Mech. Anal. 125 (1993), 81-97. MR 1241287 (94i:30020)
- [IS] Iwaniec, T. and Šverák, V., On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993), 181-188. MR 1160301 (93k:30023)
- [M] Manfredi, J., Weakly monotone functions, J. Geom. Anal. 4(2), 1994. MR 1294334 (95m:30032)
- [MV] Manfredi, J. and Villamor, E., Mappings with integrable dilatation in higher dimensions, preprint. MR 1313107 (95m:30033)
- [MTY] Müller, S., Tang, Q. and Yan, B. S, On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré, Non Linéaire 11 (1994), 217-243. MR 1267368 (95a:73025)
- [R] Rešhetnyak, J., Space mappings with bounded distortion, Sibirisk. Mat. Zh. 8 (1967), 629-658. MR 0215990 (35:6825)
- [S] Šverák, V., Regularity properties of deformations with finite energy, Arch. Rational Mech. Anal. 100 (1988), 105-127. MR 913960 (89g:73013)
- [TY] Titus, C. J. and Young, G S., The extension of interiority with some applications, Trans. Amer. Math. Soc. 103 (1962), 329-340. MR 0137103 (25:559)
- [VG] Vodop'yanov, S. K. and Goldstein, V. M., Quasiconformal mappings and spaces of functions with generalized first derivatives, Siberian Math. J. 17 (1977), 515-531.
Retrieve articles in Bulletin of the American Mathematical Society with MSC: 30C65, 35J70
Retrieve articles in all journals with MSC: 30C65, 35J70
Additional Information
DOI:
https://doi.org/10.1090/S0273-0979-1995-00583-5
Keywords:
Quasiregular mappings,
degenerate elliptic equations,
nonlinear elasticity
Article copyright:
© Copyright 1995
American Mathematical Society