Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Manfred Stoll
Title: Invariant potential theory in the unit ball of $\C^n$
Additional book information: London Math. Soc. Lecture Note Ser., vol. 199, Cambridge University Press, London and New York, 1994, x + 173 pp., US$29.95. ISBN 0-521-46830-2.

References [Enhancements On Off] (What's this?)

  • [1] Elie Cartan, Sur les domaines bornés homogénes de l'espace de n variables complexes, Abh. Math. Sem. Univ. Hamburg 11 (1935), 116-162.
  • [2] Gerald B. Folland, Spherical harmonic expansion of the Poisson-Szegö kernel for the ball, Proc. Amer. Math. Soc. 47 (1975), 401-408. MR 0370044 (51:6273)
  • [3] H. Fürstenberg, A Poisson formula for semisimple Lie groups, Ann. of Math. 77 (1963), 335-386. MR 0146298 (26:3820)
  • [4] Sigurdur Helgason, Groups and geometric analysis, Academic Press, New York, 1984. MR 754767 (86c:22017)
  • [5] J. E. Littlewood, On functions subharmonic in a circle. III, Proc. London Math. Soc. 32 (1931), 222-234.
  • [6] Walter Rudin, Function theory in the unit ball of $ {\mathbb{C}^{n}}$, Springer-Verlag, New York, 1980. MR 601594 (82i:32002)
  • [7] David Ullrich, Radial limits of $ \mathcal{M}$-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), 501-518. MR 808734 (87a:31007)

Review Information:

Reviewer: Walter Rudin
Journal: Bull. Amer. Math. Soc. 32 (1995), 360-365
American Mathematical Society