Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Algebraic Structure of Genetic Inheritance


Author: Mary Lynn Reed
Journal: Bull. Amer. Math. Soc. 34 (1997), 107-130
MSC (1991): Primary 17D92; Secondary 92-02
DOI: https://doi.org/10.1090/S0273-0979-97-00712-X
MathSciNet review: 1414973
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we will explore the nonassociative algebraic structure that naturally occurs as genetic information gets passed down through the generations. While modern understanding of genetic inheritance initiated with the theories of Charles Darwin, it was the Augustinian monk Gregor Mendel who began to uncover the mathematical nature of the subject. In fact, the symbolism Mendel used to describe his first results (e.g., see his 1866 paper Experiments in Plant-Hybridization [30]) is quite algebraically suggestive. Seventy four years later, I.M.H. Etherington introduced the formal language of abstract algebra to the study of genetics in his series of seminal papers [9], [10], [11]. In this paper we will discuss the concepts of genetics that suggest the underlying algebraic structure of inheritance, and we will give a brief overview of the algebras which arise in genetics and some of their basic properties and relationships. With the popularity of biologically motivated mathematics continuing to rise, we offer this survey article as another example of the breadth of mathematics that has biological significance. The most comprehensive reference for the mathematical research done in this area (through 1980) is Wörz-Busekros [36].


References [Enhancements On Off] (What's this?)

  • 1. V.M. Abraham. Linearizing quadratic transformations in genetic algebras. Proc. London Math. Soc. (3), 40:346-363, 1980. MR 82c:92013a
  • 2. S. Bernstein. Demonstration mathématique de la loi d'hérédité de Mendel. Comptes Rendus Acad. Sci. Paris, 177:528-531, 1923.
  • 3. -. Principe de stationarité et généralisation de la loi de Mendel. Comptes Rendus Acad. Sci. Paris, 177:581-584, 1923.
  • 4. -. Solution of a mathematical problem connected with the theory of heredity. Ann. Sci. de l'Ukraine, 1:83-114, 1924. (Russian).
  • 5. Burgueño C., M. Neuberg, and A. Suazo. Totally orthogonal Bernstein algebras. Arch. Math., 56:349-351, 1991. MR 92f:17042
  • 6. T. Cortes. Modular Bernstein algebras. J. of Algebra, 163:191-206, 1994. MR 95d:17038
  • 7. R. Costa and H. Guzzo Jr. Indecomposable baric algebras. Lin. Alg. and its Applications, 183:223-236, 1993. MR 94a:17023
  • 8. -. Indecomposable baric algebras II. Lin. Alg. and its Applications, 196:233-242, 1994. MR 95e:17030
  • 9. I.M.H. Etherington. Genetic algebras. Proc. Roy. Soc. Edinburgh, 59:242-258, 1939. MR 1:99e
  • 10. -. Duplication of linear algebras. Proc. Edinburgh Math. Soc. (2), 6:222-230, 1941. MR 3:103b
  • 11. -. Non-associative algebra and the symbolism of genetics. Proc. Roy. Soc. Edinburgh, 61:24-42, 1941. MR 2:237e
  • 12. H. Gonshor. Special train algebras arising in genetics. Proc. Edinburgh Math. Soc. (2), 12:41-53, 1960. MR 23:A1680
  • 13. -. Special train algebras arising in genetics II. Proc. Edinburgh Math. Soc. (2), 14:333-338, 1965. MR 33:2428
  • 14. -. Contributions to genetic algebras. Proc. Edinburgh Math. Soc. (2), 17:289-298, 1971. MR 46:1371
  • 15. -. Contributions to genetic algebras II. Proc. Edinburgh Math. Soc. (2), 18:273-279, 1973. MR 48:3522
  • 16. S. González and C. Martinez. Idempotent elements in a Bernstein algebra. J. London Math. Soc. (2), 42:430-436, 1990. MR 91m:17048
  • 17. S. González, C. Martinez, and P. Vicente. Idempotent elements in a 2nd-order Bernstein algebra. Comm. Alg. 22(2):595-609, 1994. MR 94m:17033
  • 18. H. Guzzo Jr. Embedding nil algebras in train algebras. Proc. Edinburgh Math. Soc., 37:463-470, 1994. MR 95h:17043
  • 19. -. The Peirce decomposition for commutative train algebras. Comm. Alg., 22(14):5745-5757, 1994. MR 95h:17042
  • 20. J.B.S. Haldane. Theoretical genetics of auto-polyploids. J. Genetics, 22:359-372, 1930.
  • 21. I.R. Hentzel, L.A. Peresi, and P. Holgate. On $k$-th order Bernstein algebras and stability at the $k+1$ generation in polyploids. IMA J. of Math. Appl. in Med. & Biol., 7:33-40, 1990. MR 91k:17039
  • 22. P. Holgate. Sequences of powers in genetic algebras. J. London Math. Soc., 42:489-496, 1967. MR 36:1499
  • 23. -. Genetic algebras associated with sex linkage. Proc. Edinburgh Math. Soc. (2), 17:113-120, 1970. MR 46:6858
  • 24. -. Characterisations of genetic algebras. J. London Math. Soc. (2), 6:169-174, 1972. MR 47:3479
  • 25. -. Genetic algebras satisfying Bernstein's stationarity principle. J. London Math. Soc. (2), 9:613-623, 1975. MR 57:5175
  • 26. -. Selfing in genetic algebras. J. Math. Biology, 6:197-206, 1978. MR 83b:92037
  • 27. Y.I. Lyubich. Basic concepts and theorems of the evolutionary genetics of free populations. Russian Mathematical Surveys, 26(5):51-123, 1971. MR 56:4906
  • 28. C. Martinez. Isomorphisms of Bernstein algebras. J. of Algebra, 160:419-423, 1993. MR 94i:17037
  • 29. D. McHale and G.A. Ringwood. Haldane linearisation of baric algebras. J. London Math. Soc. (2), 28:17-26, 1983. MR 84f:17012
  • 30. G. Mendel. Experiments in Plant-Hybridization. In James A. Peters, editor, Classic Papers in Genetics, pages 1-20. Prentice-Hall, Inc., 1959.
  • 31. L. Peresi. On baric algebras with prescribed automorphisms. Lin. Alg. and its Applications, 78:163-185, 1986. MR 87i:17034
  • 32. R.D. Schafer. Structure of genetic algebras. American J. of Mathematics, 71:121-135, 1949. MR 10:350a
  • 33. S. Walcher. On Bernstein algebras which are train algebras. Proc. Edinburgh Math. Soc., 35:159-166, 1992. MR 92m:17055
  • 34. A. Wörz-Busekros. The zygotic algebra for sex-linkage. J. Math. Biol., 1:37-46, 1974. MR 51:8194
  • 35. -. The zygotic algebra for sex-linkage. II. J. Math. Biol., 2:359-371, 1975. MR 53:13339
  • 36. -. Algebras in Genetics. Lecture Notes in Biomathematics, vol. 36, Springer-Verlag, New York, 1980. MR 82e:92033
  • 37. -. Bernstein algebras. Arch. Math., 48:388-398, 1987. MR 88d:17024

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 17D92, 92-02

Retrieve articles in all journals with MSC (1991): 17D92, 92-02


Additional Information

Mary Lynn Reed
Affiliation: Department of Mathematics, Philadelphia College of Pharmacy and Science, Philadelphia, Pennsylvania 19104
Address at time of publication: National Security Agency, Ft. George G. Meade, Maryland 20755
Email: mlreedphd@aol.com

DOI: https://doi.org/10.1090/S0273-0979-97-00712-X
Received by editor(s): August 1, 1996
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society