Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Voevodsky's proof of Milnor's conjecture


Author: F. Morel
Journal: Bull. Amer. Math. Soc. 35 (1998), 123-143
MSC (1991): Primary 12G05, 14C25, 55P42, 55S10, 57R20
DOI: https://doi.org/10.1090/S0273-0979-98-00745-9
MathSciNet review: 1600334
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an overview of Voevodsky's recent proof of Milnor's conjecture on the $\mathrm{mod}\,2$ Galois cohomology of fields of characteristic $\not=2$.


References [Enhancements On Off] (What's this?)

  • 1. J. F. Adams. Stable Homotopy and Generalised Homology, University of Chicago Press, Chicago, 1974. MR 53:6534
  • 2. H. Bass and J. Tate. The Milnor ring of a global field, Lect. Notes in Math. 342, Springer, 1973, 349-446. MR 56:449
  • 3. A. Beilinson. Height pairing between algebraic cycles, in K-Theory, Arithmetic and geometry, Lect. Notes in Math. 1289, Springer (1987) 1-26. MR 89h:11027
  • 4. S. Bloch. Lectures on algebraic cycles, Duke Univ. Lectures Series, 1980. MR 82e:14012
  • 5. S. Bloch. Algebraic cycles and higher K-theory, Adv. in Math 61 No 3 (1986), 267-304. MR 88f:18010
  • 6. S. Bloch. The moving lemma for the higher Chow groups, Alg. Geom. 3 (1994), 537-568. MR 96c:14001
  • 7. S. Bloch and S. Lichtenbaum. A spectral sequence for motivic cohomology, preprint.
  • 8. A. Dold and R. Thom. Quasifaserungen und unendliche symmetrische Produkte, Annals of Math. 67 (1958), 239-281. MR 20:3542
  • 9. R. Elman, T. Y. Lam, Pfister forms and K-theory of fields, J. Algebra 23 (1972), 181-213. MR 46:1882
  • 10. E.M. Friedlander, Motivic Complexes of Suslin and Voevodsky, Séminaire Bourbaki, Exposé 833 Juin 1997.
  • 11. E.M. Friedlander and V. Voevodsky, Bivariant cycle cohomology, In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
  • 12. A. Grothendieck. La théorie des classes de Chern, Bull. Soc. Math. de France, 86 (1958), 137-154. MR 22:6818
  • 13. B. Kahn. La conjecture de Milnor, d'après V. Voevodsky, Séminaire Bourbaki, Exposé 834 Juin 1997.
  • 14. K. Kato. A generalization of local class field theory by using K-groups, II, J. Fac. Sci. Univ. Tokyo 1A 27 (1980), 603-683. MR 83g:12020a
  • 15. M. Knebusch, Generic splitting of quadratic forms, I, Proc. London Math. Soc. 33 (1976),65-93. MR 54:230
  • 16. M. Levine. Bloch's higher Chow groups revisited, in K-theory, Strasbourg, 1992, Asterisque 226 (1994), 235-320. MR 96c:14008
  • 17. M. Levine. Homology of algebraic varieties : an introduction to recent results of Suslin and Voevodsky, Bull. A.M.S. (N.S.) 34 (1997), 293-312. MR 97m:14025
  • 18. S. Lichtenbaum. Values of Zeta-functions at non-negative integers, In Number theory, Lect. Notes in Math. 1068, Springer-Verlag (1984), 127-138. MR 756:089
  • 19. A. Merkurjev. On the norm residue symbol of degree 2 (in Russian), Dokl. Akad. Nauk SSSR 261 (1981), 542-547. English translation: Soviet Math. Dokl. 24 (1981), 546-551.
  • 20. A. Merkurjev and A.A. Suslin. K-cohomology of Severi-Brauer varietes and the norm residue homomorphism (in Russian), Izv. Akad. Nauk SSSR 46 (1982), 1011-1046. English transla-
    tion: Math. USSR Izv. 21 (1983), 307-340.
  • 21. A. Merkurjev and A.A. Suslin. On the norm residue homomorphism of degree three (in Russian), Izv. Akad. Nauk SSSR 54 (1990), 339-356. English translation : Math. USSR Izv. 36 (1991), 349-368.
  • 22. J. S. Milne. Etale Cohomology, Princeton Math. Series 33, Princeton University Press (1980). MR 81j:14002
  • 23. J. Milnor. The Steenrod algebra and its dual. Annals of Math., 67(1), (1958) 150-171. MR 20:6092
  • 24. J. Milnor. Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), 318-344. MR 41:5465
  • 25. J. Milnor and J. Stasheff, Characteristic classes, Annals of Math. Studies 76, Princeton University Press (1974). MR 55:13428
  • 26. F. Morel and V. Voevodsky. $\mathbf{A}^1$-homotopy theory of schemes, in preparation.
  • 27. Y. Nisnevich. The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. In Algebraic K-theory: connections with geometry and topology, pages 241-342. Kluwer Acad. Publ., Dordrecht, 1989. MR 91c:19004
  • 28. D. Orlov, A. Vishik and V. Voevodsky, Motivic cohomology of Pfister quadrics, in preparation.
  • 29. M. Rost. Hilbert's theorem 90 for $K_3^M$ for degree-two extensions, preprint, 1986.
  • 30. M. Rost. On the spinornorm and $A_0(X,K_1)$ for quadrics, preprint 1988.
  • 31. M. Rost. Some new results on the Chow groups of quadrics, preprint 1990.
  • 32. W. Scharlau. Quadratic and Hermitian forms, Grundlehren der Math. Wissenschaften 270, Springer-Verlag (1985). MR 86k:11022
  • 33. J.-P. Serre. Groupes algébriques et corps de classes, Hermann, Paris (1959). MR 21:1973
  • 34. J.-P. Serre. Corps locaux, Act. Sci. Ind. no 1296, Paris (1962). MR 27:133
  • 35. J.-P. Serre. Cohomologie galoisienne, Lect. Notes in Math. 5 (nouvelle édition), Springer, 1994. MR 96b:12010
  • 36. J.-P. Serre. Algèbre locale, multiplicités, Lect. Notes in Math. 11(troisème édition), Springer, 1975. MR 34:1352
  • 37. N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Annals of Math. Studies 50, Princeton University Press (1962). MR 26:3056
  • 38. A. Suslin. The quaternion homomorphism for the field of functions on a conic, Dokl. Akad. Nauk SSSR 265 (1982), 292-296 ; English translation in Soviet. Math. Dokl. 26 (1982), 72-77. MR 84a:12030
  • 39. A. Suslin. Higher Chow groups and étale cohomology. In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
  • 40. A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients. In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
  • 41. A. Suslin and V. Voevodsky, Singular homology of abstract algebraic varieties, Inventionnes Math. 123 Fasc. 1(1996), 61-94. MR 97e:14030
  • 42. A. Suslin and V. Voevodsky, Relative cycles and Chow sheaves, In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
  • 43. V. Voevodsky. The Milnor conjecture, preprint 1996.
  • 44. V. Voevodsky. Cohomological theory of presheaves with transfers, In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
  • 45. V. Voevodsky. Triangulated categories of motives over a field, In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
  • 46. V. Voevodsky. Bloch-Kato conjecture for $ \mathbf{Z}/2$-coefficients and algebraic Morava K-theories, (1995) preprint.
  • 47. V. Voevodsky. Cohomological operations in motivic cohomology, in preparation
  • 48. M. Artin, A. Grothendieck et J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, 270, 305, Springer-Verlag, Berlin, Heidelberg, New-York, (1972-73). MR 50:7130; MR 50:7131; MR 50:7132

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 12G05, 14C25, 55P42, 55S10, 57R20

Retrieve articles in all journals with MSC (1991): 12G05, 14C25, 55P42, 55S10, 57R20


Additional Information

F. Morel
Affiliation: U.R.A. 169 du C.N.R.S., École Polytechnique, France
Email: morel@math.polytechnique.fr

DOI: https://doi.org/10.1090/S0273-0979-98-00745-9
Keywords: Galois cohomology, algebraic cycles, motives, stable homotopy theory
Received by editor(s): October 7, 1997
Received by editor(s) in revised form: January 25, 1998
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society