Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

Voevodsky's proof of Milnor's conjecture


Author: F. Morel
Journal: Bull. Amer. Math. Soc. 35 (1998), 123-143
MSC (1991): Primary 12G05, 14C25, 55P42, 55S10, 57R20
MathSciNet review: 1600334
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an overview of Voevodsky's recent proof of Milnor's conjecture on the $\mathrm{mod}\,2$ Galois cohomology of fields of characteristic $\not=2$.


References [Enhancements On Off] (What's this?)

  • 1. J. F. Adams, Stable homotopy and generalised homology, University of Chicago Press, Chicago, Ill., 1974. Chicago Lectures in Mathematics. MR 0402720 (53 #6534)
  • 2. H. Bass and J. Tate, The Milnor ring of a global field, Algebraic 𝐾-theory, II: “Classical” algebraic 𝐾-theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972), Springer, Berlin, 1973, pp. 349–446. Lecture Notes in Math., Vol. 342. MR 0442061 (56 #449)
  • 3. A. A. Beĭlinson, Height pairing between algebraic cycles, 𝐾-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 1–25. MR 923131 (89h:11027), http://dx.doi.org/10.1007/BFb0078364
  • 4. Spencer Bloch, Lectures on algebraic cycles, Duke University Mathematics Series, IV, Duke University Mathematics Department, Durham, N.C., 1980. MR 558224 (82e:14012)
  • 5. Spencer Bloch, Algebraic cycles and higher 𝐾-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815 (88f:18010), http://dx.doi.org/10.1016/0001-8708(86)90081-2
  • 6. M. Green, J. Murre, and C. Voisin, Algebraic cycles and Hodge theory, Lecture Notes in Mathematics, vol. 1594, Springer-Verlag, Berlin, 1994. Lectures given at the Second C.I.M.E. Session held in Torino, June 21–29, 1993; Edited by A. Albano and F. Bardelli. MR 1335238 (96c:14001)
  • 7. S. Bloch and S. Lichtenbaum. A spectral sequence for motivic cohomology, preprint.
  • 8. Albrecht Dold and René Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2) 67 (1958), 239–281 (German). MR 0097062 (20 #3542)
  • 9. Richard Elman and T. Y. Lam, Pfister forms and 𝐾-theory of fields, J. Algebra 23 (1972), 181–213. MR 0302739 (46 #1882)
  • 10. E.M. Friedlander, Motivic Complexes of Suslin and Voevodsky, Séminaire Bourbaki, Exposé 833 Juin 1997.
  • 11. E.M. Friedlander and V. Voevodsky, Bivariant cycle cohomology, In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
  • 12. Alexander Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France 86 (1958), 137–154 (French). MR 0116023 (22 #6818)
  • 13. B. Kahn. La conjecture de Milnor, d'après V. Voevodsky, Séminaire Bourbaki, Exposé 834 Juin 1997.
  • 14. Kazuya Kato, A generalization of local class field theory by using 𝐾-groups. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, 603–683. MR 603953 (83g:12020a)
  • 15. Manfred Knebusch, Generic splitting of quadratic forms. I, Proc. London Math. Soc. (3) 33 (1976), no. 1, 65–93. MR 0412101 (54 #230)
  • 16. Marc Levine, Bloch’s higher Chow groups revisited, Astérisque 226 (1994), 10, 235–320. 𝐾-theory (Strasbourg, 1992). MR 1317122 (96c:14008)
  • 17. Marc Levine, Homology of algebraic varieties: an introduction to the works of Suslin and Voevodsky, Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 3, 293–312. MR 1432056 (97m:14025), http://dx.doi.org/10.1090/S0273-0979-97-00723-4
  • 18. S. Lichtenbaum. Values of Zeta-functions at non-negative integers, In Number theory, Lect. Notes in Math. 1068, Springer-Verlag (1984), 127-138. MR 756:089
  • 19. A. Merkurjev. On the norm residue symbol of degree 2 (in Russian), Dokl. Akad. Nauk SSSR 261 (1981), 542-547. English translation: Soviet Math. Dokl. 24 (1981), 546-551.
  • 20. A. Merkurjev and A.A. Suslin. K-cohomology of Severi-Brauer varietes and the norm residue homomorphism (in Russian), Izv. Akad. Nauk SSSR 46 (1982), 1011-1046. English transla-
    tion: Math. USSR Izv. 21 (1983), 307-340.
  • 21. A. Merkurjev and A.A. Suslin. On the norm residue homomorphism of degree three (in Russian), Izv. Akad. Nauk SSSR 54 (1990), 339-356. English translation : Math. USSR Izv. 36 (1991), 349-368.
  • 22. James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531 (81j:14002)
  • 23. John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171. MR 0099653 (20 #6092)
  • 24. John Milnor, Algebraic 𝐾-theory and quadratic forms, Invent. Math. 9 (1969/1970), 318–344. MR 0260844 (41 #5465)
  • 25. John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J., 1974. Annals of Mathematics Studies, No. 76. MR 0440554 (55 #13428)
  • 26. F. Morel and V. Voevodsky. $\mathbf{A}^1$-homotopy theory of schemes, in preparation.
  • 27. Ye. A. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic 𝐾-theory, Algebraic 𝐾-theory: connections with geometry and topology (Lake Louise, AB, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 279, Kluwer Acad. Publ., Dordrecht, 1989, pp. 241–342. MR 1045853 (91c:19004)
  • 28. D. Orlov, A. Vishik and V. Voevodsky, Motivic cohomology of Pfister quadrics, in preparation.
  • 29. M. Rost. Hilbert's theorem 90 for $K_3^M$ for degree-two extensions, preprint, 1986.
  • 30. M. Rost. On the spinornorm and $A_0(X,K_1)$ for quadrics, preprint 1988.
  • 31. M. Rost. Some new results on the Chow groups of quadrics, preprint 1990.
  • 32. Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063 (86k:11022)
  • 33. Jean-Pierre Serre, Groupes algébriques et corps de classes, Publications de l’institut de mathématique de l’université de Nancago, VII. Hermann, Paris, 1959 (French). MR 0103191 (21 #1973)
  • 34. Jean-Pierre Serre, Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962 (French). MR 0150130 (27 #133)
  • 35. Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577 (96b:12010)
  • 36. Jean-Pierre Serre, Algèbre locale. Multiplicités, Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin, 1965 (French). MR 0201468 (34 #1352)
  • 37. N. E. Steenrod, Cohomology operations, Lectures by N. E. STeenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. MR 0145525 (26 #3056)
  • 38. A. A. Suslin, Quaternion homomorphism for the field of functions on a conic, Dokl. Akad. Nauk SSSR 265 (1982), no. 2, 292–296 (Russian). MR 665314 (84a:12030)
  • 39. A. Suslin. Higher Chow groups and étale cohomology. In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
  • 40. A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients. In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
  • 41. Andrei Suslin and Vladimir Voevodsky, Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996), no. 1, 61–94. MR 1376246 (97e:14030), http://dx.doi.org/10.1007/BF01232367
  • 42. A. Suslin and V. Voevodsky, Relative cycles and Chow sheaves, In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
  • 43. V. Voevodsky. The Milnor conjecture, preprint 1996.
  • 44. V. Voevodsky. Cohomological theory of presheaves with transfers, In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
  • 45. V. Voevodsky. Triangulated categories of motives over a field, In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
  • 46. V. Voevodsky. Bloch-Kato conjecture for $ \mathbf{Z}/2$-coefficients and algebraic Morava K-theories, (1995) preprint.
  • 47. V. Voevodsky. Cohomological operations in motivic cohomology, in preparation
  • 48. Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Mathematics, Vol. 269, Springer-Verlag, Berlin, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354652 (50 #7130)
    Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, Vol. 270, Springer-Verlag, Berlin, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354653 (50 #7131)
    Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR 0354654 (50 #7132)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 12G05, 14C25, 55P42, 55S10, 57R20

Retrieve articles in all journals with MSC (1991): 12G05, 14C25, 55P42, 55S10, 57R20


Additional Information

F. Morel
Affiliation: U.R.A. 169 du C.N.R.S., École Polytechnique, France
Email: morel@math.polytechnique.fr

DOI: http://dx.doi.org/10.1090/S0273-0979-98-00745-9
PII: S 0273-0979(98)00745-9
Keywords: Galois cohomology, algebraic cycles, motives, stable homotopy theory
Received by editor(s): October 7, 1997
Received by editor(s) in revised form: January 25, 1998
Article copyright: © Copyright 1998 American Mathematical Society