Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Universal families and hypercyclic operators


Author: Karl-Goswin Grosse-Erdmann
Journal: Bull. Amer. Math. Soc. 36 (1999), 345-381
MSC (1991): Primary 47A99, 54H99; Secondary 47--02, 54--02
DOI: https://doi.org/10.1090/S0273-0979-99-00788-0
Published electronically: June 23, 1999
MathSciNet review: 1685272
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [Abe97] Y. Abe, Universal holomorphic functions in several variables, Analysis 17 (1997), 71-77. MR 98e:32003 4a
  • [Abe$99^+$] Y. Abe, Universal functions on complex special linear groups, (Proc. Conf., Pozna\'{n}, 1998) (to appear). 4a
  • [AbZa$99^+$] Y. Abe and P. Zappa, Universal functions on complex general linear groups, J. Approx. Theory (to appear). 4a
  • [AlAr98a] M. P. Aldred and D. H. Armitage, Harmonic analogues of G. R. MacLane's universal functions, J. London Math. Soc. (2) 57 (1998), 148-156. MR 99g:31006 3e
  • [AlAr98b] M. P. Aldred and D. H. Armitage, Harmonic analogues of G. R. MacLane's universal functions. II, J. Math. Anal. Appl. 220 (1998), 382-395. MR 99g:31007 3e
  • [Ale60] G. Alexits, Konvergenzprobleme der Orthogonalreihen, Verlag Ungar. Akad. Wiss., Budapest, 1960. English edition: Convergence problems of orthogonal series, Pergamon Press, Oxford, 1961. MR 28:5292 3c
  • [Ans95] S. I. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995), 374-383. MR 96h:47002 1b,2c,5
  • [Ans97] S. I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (1997), 384-390. MR 98h:47028a 2b,2c,2d
  • [Arm$99^+$] D. H. Armitage, Dense vector spaces of universal harmonic functions, Advances in multivariate approximation (Proc. Conf., Witten-Bommerholz, 1998) (to appear). 3e,4c
  • [ArGa96] D. H. Armitage and P. M. Gauthier, Recent developments in harmonic approximation, with applications, Results Math. 29 (1996), 1-15. MR 97f:31007 3e
  • [ArBè99] R. Aron and J. Bès, Hypercyclic differentiation operators, Function Spaces (Proc. Conf., Edwardsville, IL, 1998), 39-46, Amer. Math. Soc., Providence, RI, 1999. 4a,4c
  • [AvCa83] V. Aversa and R. Carrese, Una primitiva universale per funzioni di piu variabili, Rend. Circ. Mat. Palermo (2) 32 (1983), 131-138. MR 85b:26012 3b
  • [Bag81] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta function and other allied Dirichlet series, Thesis, Indian Statistical Institute, Calcutta, 1981. 6
  • [Bag82] B. Bagchi, A joint universality theorem for Dirichlet $L$-functions, Math. Z. 181 (1982), 319-334. MR 84c:10038 6
  • [BaKr81] A. V. Bakhshetsyan and V. G. Krotov, On universal series in Schauder systems (Russian), Izv. Akad. Nauk Armyan. SSR Ser. Mat. 16 (1981), 44-53. English transl. in: Soviet J. Contemporary Math. Anal. 16 (1981), no. 1, 33-41. MR 84d:42035 3c
  • [Bar61] N. K. Bari, Trigonometric series (Russian), Fizmatgiz, Moscow, 1961. English transl.: N. K. Bary, A treatise on trigonometric series. Vols. I, II, Pergamon Press, Oxford, 1964. MR 23:A3411 3c
  • [Bea86] B. Beauzamy, Un opérateur, sur l'espace de Hilbert, dont tous les polynômes sont hypercycliques, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 923-925. MR 88g:47010 2a,2b
  • [Bea87a] B. Beauzamy, An operator on a separable Hilbert space with many hypercyclic vectors, Studia Math. 87 (1987), 71-78. MR 89j:47004 2a,2b
  • [Bea87b] B. Beauzamy, Opérateurs de rayon spectral strictement supérieur à $1$, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), 263-266. MR 88d:47004 2a,2d
  • [Bea88] B. Beauzamy, Introduction to operator theory and invariant subspaces, North-Holland, Amsterdam, 1988. MR 90d:47001 1a,1b,2a,2b,2c,2d,5
  • [Bea90] B. Beauzamy, An operator on a separable Hilbert space with all polynomials hypercyclic, Studia Math. 96 (1990), 81-90. MR 91d:47004 2b
  • [Ber94] L. Bernal-González, Derivative and antiderivative operators and the size of complex domains, Ann. Polon. Math. 59 (1994), 267-274. MR 95k:30081 1c,2a,4c
  • [Ber96] L. Bernal-González, Universal functions for Taylor shifts, Complex Variables Theory Appl. 31 (1996), 121-129. MR 98h:47042 1c,2a,4c
  • [Ber97] L. Bernal-González, On universal entire functions with zero-free derivatives, Arch. Math. 68 (1997), 145-150. MR 97k:30048 4c
  • [Ber99a] L. Bernal-González, On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc. 127 (1999), 1003-1010. MR 99f:47010 2d
  • [Ber99b] L. Bernal-González, Hypercyclic sequences of differential and antidifferential operators, J. Approx. Theory 96 (1999), 323-337. CMP 99:08 1c,2a,4c
  • [Ber$99^+$] L. Bernal-González, Densely hereditarily hypercyclic sequences and large hypercyclic mainfolds, Proc. Amer. Math. Soc. (to appear). CMP 99:02 1a,1b,1c,2a,2c,4c
  • [BeCa$99^+$] L. Bernal-González and M. C. Calderón-Moreno, A Seidel-Walsh theorem with linear differential operators, Arch. Math. (to appear). 4a
  • [BeMo95a] L. Bernal-González and A. Montes-Rodríguez, Universal functions for composition operators, Complex Variables Theory Appl. 27 (1995), 47-56. MR 96a:30041 4a
  • [BeMo95b] L. Bernal González and A. Montes Rodríguez, Non-finite dimensional closed vector spaces of universal functions for composition operators, J. Approx. Theory 82 (1995), 375-391. MR 96f:30034 2b,4a
  • [Brn$99^+$] N. C. Bernardes, On orbits of polynomial maps in Banach spaces, Quaestiones Math. (to appear). 2d
  • [Bès99] J. P. Bès, Invariant manifolds of hypercyclic vectors for the real scalar case, Proc. Amer. Math. Soc. 127 (1999), 1801-1804. CMP 99:10 2b,2d
  • [BèPe$99^+$] J. Bès and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. (to appear). 1b,2a,2c,2d,4c,5
  • [Bir29] G. D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières, C. R. Acad. Sci. Paris 189 (1929), 473-475. JFM 55:192 1a,2a,4a
  • [BlRu83] C. Blair and L. A. Rubel, A universal entire function, Amer. Math. Monthly 90 (1983), 331-332. MR 85a:30046 4c
  • [BlRu84] C. Blair and L. Rubel, A triply universal entire function, Enseign. Math. (2) 30 (1984), 269-274. MR 86b:30034 1b,4a,4c
  • [Bog78] A. Bogmér, On universal elements of series of linear operators (Hungarian), Mat. Lapok 31 (1978/83), 195-196. MR 85h:41049 1c
  • [BoSö87] A. Bogmér and A. Sövegjártó, On universal functions, Acta Math. Hungar. 49 (1987), 237-239. MR 88a:26006 3b
  • [Bon$99^+$] J. Bonet, Hypercyclic and chaotic convolution operators, J. London Math. Soc. (to appear). 2c,2d,3e,4c
  • [BoPe98] J. Bonet and A. Peris, Hypercyclic operators on non-normable Fréchet spaces, J. Funct. Anal. 159 (1998), 587-595. CMP 99:04 2d
  • [Bou93] P. S. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc. 118 (1993), 845-847. MR 93i:47002 2b
  • [Bou96] P. S. Bourdon, The second iterate of a map with dense orbit, Proc. Amer. Math. Soc. 124 (1996), 1577-1581. MR 97a:54043 2c
  • [BoSh90] P. S. Bourdon and J. H. Shapiro, Cyclic composition operators on $H\sp 2$, Operator Theory: Operator Algebras and Applications, Part 2 (Proc. Summer Res. Inst., Durham, NH, 1988), 43-53, Amer. Math. Soc., Providence, RI, 1990. MR 91h:47028 1c,4a
  • [BoSh97] P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997), no. 596. MR 97h:47023 2c,4a
  • [Bru78] A. M. Bruckner, Differentiation of real functions, Springer, Berlin, 1978. MR 80h:26002 3b
  • [Buc87] Z. Buczolich, On universal functions and series, Acta Math. Hungar. 49 (1987), 403-414. MR 88k:42011 3b,3c
  • [CaWa98] X. H. Cao and Y. G. Wang, Hypercyclic and supercyclic operators (Chinese), Qufu Shifan Daxue Xuebao Ziran Kexue Ban 24 (1998), no. 4, 4-7. CMP 99:08 2d
  • [Cat89] F. S. Cater, Some higher dimensional Marcinkiewicz theorems, Real Anal. Exchange 15 (1989/90), 269-274. MR 91d:26008 3b
  • [Cha99] K. C. Chan, Hypercyclicity of the operator algebra for a separable Hilbert space, J. Operator Theory 42 (1999), 231-244. 2b,5
  • [Cha$99^+$] K. C. Chan, The density of hypercyclic operators on a Hilbert space, preprint. 2d
  • [ChSh91] K. C. Chan and J. H. Shapiro, The cyclic behavior of translation operators on Hilbert spaces of entire functions, Indiana Univ. Math. J. 40 (1991), 1421-1449. MR 92m:47060 2c,2d,4a,4c,5
  • [Chs63] N. S. Chashchina, On the theory of a universal Dirichlet series (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 1963, no. 4(35), 165-167. MR 27:3787 4d
  • [Che79] P. S. Chee, Universal functions in several complex variables, J. Austral. Math. Soc. Ser. A 28 (1979), 189-196. MR 81c:32014 4a
  • [Chk77] G. A. Chkhaidze, Universal series (Russian), Soobshch. Akad. Nauk Gruzin. SSR 86 (1977), 45-47. MR 57:3731 3d
  • [ChPa71] C. K. Chui and M. N. Parnes, Approximation by overconvergence of a power series, J. Math. Anal. Appl. 36 (1971), 693-696. MR 45:563 4d
  • [DSW97] W. Desch, W. Schappacher, and G. F. Webb, Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory Dynam. Systems 17 (1997), 793-819. MR 98j:47083 2a,2c,2d,3e,5
  • [Dod88] L. K. Dodunova, On the overconvergence of universal series (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 1988, no. 2, 19-22. English transl. in: Soviet Math. (Iz. VUZ) 32 (1988), no. 2, 27-30. MR 89d:30003 4d
  • [Dod90] L. K. Dodunova, A generalization of the universality property of Faber polynomial series (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 1990, no. 12, 31-34. English transl. in: Soviet Math. (Iz. VUZ) 34 (1990), no. 12, 37-40. MR 92i:30004 4d
  • [Dod97] L. K. Dodunova, Approximation of analytic functions by de la Vallée-Poussin sums (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 1997, no. 3, 34-37. English transl. in: Russian Math. (Iz. VUZ) 41 (1997), no. 3, 33-36. MR 99g:41040 4d
  • [Duy83] S. M. Du[??]ios Ruis [S. M. Duyos-Ruiz], On the existence of universal functions (Russian), Dokl. Akad. Nauk SSSR 268 (1983), 18-22. English transl. in: Soviet Math. Dokl. 27 (1983), 9-13. MR 84d:30047 3e,4a
  • [Duy84] S. M. Du[??]ios Ruis [S. M. Duyos-Ruiz], Universal functions and the structure of the space of entire functions (Russian), Dokl. Akad. Nauk SSSR 279 (1984), 792-795. English transl. in: Soviet Math. Dokl. 30 (1984), 713-716. MR 86c:30055 1a,1b,4a,4c
  • [DVW97] J. Dyson, R. Villella-Bressan, and G. Webb, Hypercyclicity of solutions of a transport equation with delays, Nonlinear Anal. 29 (1997), 1343-1351. MR 98k:35201 2a,3e
  • [Dza64] O. P. Dzagnidze, On universal double series (Russian), Soobshch. Akad. Nauk Gruzin. SSR 34 (1964), 525-528. MR 29:2566 3c
  • [Dza69] O. P. Dzagnidze, The universal harmonic function in the space $E\sb{n}$ (Russian), Soobshch. Akad. Nauk Gruzin. SSR 55 (1969), 41-44. MR 41:5640 3e
  • [Edg70] J. J. Edge, Universal trigonometric series, J. Math. Anal. Appl. 29 (1970), 507-511. MR 40:4654 3d
  • [Ema97] H. Emamirad, Hypercyclicité du semi-groupe de transport et le théorème de représentation de Lax et Phillips, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 157-162. MR 98h:47058 2a,3e
  • [Ema98] H. Emamirad, Hypercyclicity in the scattering theory for linear transport equation, Trans. Amer. Math. Soc. 350 (1998), 3707-3716. MR 98k:47077 2a,3e
  • [Èmi90] K. M. Èminyan, $\chi$-universality of the Dirichlet $L$-function (Russian), Mat. Zametki 47 (1990), no. 6, 132-137. English transl. in: Math. Notes 47 (1990), 618-622. MR 91i:11103 6
  • [Fau79] K. Faulstich, Summierbarkeit von Potenzreihen durch Riesz-Verfahren mit komplexen Erzeugendenfolgen, Mitt. Math. Sem. Giessen 139 (1979). MR 80j:40002 4e
  • [FLT81] K. Faulstich, W. Luh, and L. Tomm, Universelle Approximation durch Riesz-Transformierte der geometrischen Reihe, Manuscripta Math. 36 (1981), 309-321. MR 84a:40005 4e
  • [Fly95] E. Flytzanis, Unimodular eigenvalues and linear chaos in Hilbert spaces, Geom. Funct. Anal. 5 (1995), 1-13. MR 95k:28034 2a,2d
  • [GaSt94] X.-X. Gan and K. R. Stromberg, On universal primitive functions, Proc. Amer. Math. Soc. 121 (1994), 151-161. MR 94g:26024 3b
  • [Gar97] R. Garunk\v{s}tis, The universality theorem with weight for the Lerch zeta-function, New Trends in Probability and Statistics, Vol. 4 (Proc. Conf., Palanga, 1996), 59-67, VSP, Utrecht; TEV, Vilnius, 1997. CMP 99:03 6
  • [Gau94] P. M. Gauthier, Uniform approximation, Complex Potential Theory (Proc. NATO Adv. Study Inst., Montreal, 1993), 235-271, Kluwer Acad. Publ., Dordrecht, 1994. MR 96d:30048 4a
  • [GaKa82] V. I. Gavrilov and A. N. Kanatnikov, An example of a universal holomorphic function (Russian), Dokl. Akad. Nauk SSSR 265 (1982), 274-276. English transl. in: Soviet Math. Dokl. 26 (1982), 52-54. MR 83j:10047 6
  • [GeLM$99^+$] W. Gehlen, W. Luh, and J. Müller, On the existence of O-universal functions, Complex Variables Theory Appl. (to appear). 4d
  • [GeOl64] B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in analysis, Holden-Day, San Francisco, CA, 1964. MR 30:204 3a
  • [GeSh87] R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), 281-288. MR 88g:47060 1a,1b,1c,2a,4a,4c,5
  • [God89] G. Godefroy, Opérateurs ayant un sous-espace dense de vecteurs hypercycliques, Séminaire d'Initiation à l'Analyse 1988-1989 (1989), Exposé no. 3. MR 92d:47028 1c,2a,2b,4a,4c
  • [GoSh91] G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229-269. MR 92d:47029 1a,1b,1c,2a,2b,2c,2d,3e,4a,4c,5
  • [GoPe65] C. Goffman and G. Pedrick, First course in functional analysis, Prentice-Hall, Englewood Cliffs, N.J., 1965. MR 32:1540 3d
  • [GoWa60] C. Goffman and D. Waterman, Basic sequences in the space of measurable functions, Proc. Amer. Math. Soc. 11 (1960), 211-213. MR 22:2886 1d,3d
  • [GoWa72] C. Goffman and D. Waterman, A remark concerning universal series, J. Math. Anal. Appl. 40 (1972), 735-737. MR 47:7409 3d
  • [Gon79] S. M. Gonek, Analytic properties of zeta and L-functions, Thesis, Univ. of Michigan, Ann Arbor, 1979. 6
  • [GoLM$99^+$] M. González-Ortiz, F. León-Saavedra, and A. Montes-Rodríguez, Semi-Fredholm theory: hypercyclic and supercyclic subspaces, preprint. 2b,2c,2d
  • [Goo81] A. Good, On the distribution of the values of Riemann's zeta-function, Acta Arith. 38 (1981), 347-388. MR 83m:10068 6
  • [Gra84] E. Grande, Sur un théorème de Marcinkiewicz, Problemy Mat. 1984, no. 4, 35-41. MR 86b:26012 3b
  • [Gro87] K.-G. Grosse-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen 176 (1987). MR 88i:30060 1a,1b,1c,3a,3c,4a,4b,4c,4d
  • [Gro90] K.-G. Grosse-Erdmann, On the universal functions of G. R. MacLane, Complex Variables Theory Appl. 15 (1990), 193-196. MR 91i:30021 1c,4c
  • [Gro92] K.-G. Grosse-Erdmann, Topologies on matrix spaces and universal matrices, Analysis 12 (1992), 47-56. MR 93d:46016 1b,1c,4e
  • [Gro$99^+$] K.-G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, preprint. 5
  • [GuMa96] A. Gulisashvili and C. R. MacCluer, Linear chaos in the unforced quantum harmonic oscillator, J. Dynam. Systems Measurement Control 118 (1996), 337-338. Zbl 870:58057 5
  • [HNRR86] D. Hadwin, E. Nordgren, H. Radjavi, and P. Rosenthal, Orbit-reflexive operators, J. London Math. Soc. (2) 34 (1986), 111-119. MR 88d:47010 2b
  • [HKR85] I. Halperin, C. Kitai, and P. Rosenthal, On orbits of linear operators, J. London Math. Soc. (2) 31 (1985), 561-565. MR 87e:47025 2a,2d
  • [Hei55] M. Heins, A universal Blaschke product, Arch. Math. 6 (1955), 41-44. MR 16:460e 4a,4b
  • [Hej89] J. Hejduk, Universal sequences in the space of real measurable functions, Zeszyty Nauk. Politech. {\L}ódz. Mat. no. 21 (1989), 75-85. MR 91d:28002 3d
  • [Her91] D. A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99 (1991), 179-190. MR 92g:47026 2a,2b,2c,2d
  • [Her92] D. A. Herrero, Hypercyclic operators and chaos, J. Operator Theory 28 (1992), 93-103. MR 95g:47031 2c,2d
  • [HeKi92] D. A. Herrero and C. Kitai, On invertible hypercyclic operators, Proc. Amer. Math. Soc. 116 (1992), 873-875. MR 93a:47023 2c
  • [HeWa90] D. A. Herrero and Z.-Y. Wang, Compact perturbations of hypercyclic and supercyclic operators, Indiana Univ. Math. J. 39 (1990), 819-829. MR 91k:47042 2d,5
  • [Hzg88] G. Herzog, Universelle Funktionen, Diplomarbeit, Univ. Karlsruhe, Karlsruhe, 1988. 3e,4c
  • [Hzg91] G. Herzog, On universal functions and interpolation, Analysis 11 (1991), 21-26. MR 93c:41002 3e
  • [Hzg94] G. Herzog, On zero-free universal entire functions, Arch. Math. 63 (1994), 329-332. MR 95f:54029 1b,4c
  • [Hzg95] G. Herzog, On a theorem of Seidel and Walsh, Period. Math. Hungar. 30 (1995), 205-210. MR 96e:30116 1b,4a
  • [Hzg97] G. Herzog, On a universality of the heat equation, Math. Nachr. 188 (1997), 169-171. MR 98i:35077 3e
  • [HeLe93] G. Herzog and R. Lemmert, Über Endomorphismen mit dichten Bahnen, Math. Z. 213 (1993), 473-477. MR 94h:47052 2b,2d
  • [HeLe98] G. Herzog and R. Lemmert, On universal subsets of Banach spaces, Math. Z. 229 (1998), 615-619. CMP 99:06 2c
  • [HeSc94] G. Herzog and C. Schmoeger, On operators $T$ such that $f(T)$ is hypercyclic, Studia Math. 108 (1994), 209-216. MR 95f:47031 2d
  • [Hor87] M. Horváth, On multidimensional universal functions, Studia Sci. Math. Hungar. 22 (1987), 75-78. MR 88m:26013 3b
  • [Iva81] V. I. Ivanov, Representation of measurable functions by multiple trigonometric series (Russian), Dokl. Akad. Nauk SSSR 259 (1981), 279-282. English transl. in: Soviet Math. Dokl. 24 (1981), 65-68. MR 83b:42016 3c
  • [Iva83a] V. I. Ivanov, Representation of measurable functions by multiple trigonometric series (Russian), Trudy Mat. Inst. Steklov. 164 (1983), 100-123. English transl. in: Proc. Steklov Inst. Math. 164 (1983), 113-139. MR 86e:42023 3c
  • [Iva83b] V. I. Ivanov, The coefficients of orthogonal universal series and zero series (Russian), Dokl. Akad. Nauk SSSR 272 (1983), 19-23. English transl. in: Soviet Math. Dokl. 28 (1983), 312-315. MR 85d:42028 3c
  • [Iva86] V. I. Ivanov, Representation of functions by series in metric symmetric spaces without linear functionals (Russian), Dokl. Akad. Nauk SSSR 289 (1986), 532-535. English transl. in: Soviet Math. Dokl. 34 (1987), 113-116. MR 87j:46058 1d,3d
  • [Iva89] V. I. Ivanov, Representation of functions by series in metric symmetric spaces without linear functionals (Russian), Trudy Mat. Inst. Steklov. 189 (1989), 34-77. English transl. in: Proc. Steklov Inst. Math. 189 (1990), 37-85. MR 90i:41045 1d,3c,3d
  • [Joó78] I. Joó, Note to a theorem of Talaljan on universal series and to a problem of Niki\v{s}in, Fourier Analysis and Approximation Theory (Proc. Colloq., Budapest, 1976), Vol. I, 451-458, North-Holland, Amsterdam, 1978. MR 81k:42025 1c,3c
  • [Joó89] I. Joó, On the divergence of eigenfunction expansions, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 32 (1989), 3-36. MR 92d:47030 1a,3b,3c
  • [Joó91] I. Joó, On a theorem of Miklós Horváth (Hungarian), Mat. Lapok 34 (1983/87), 301-306 (1991). MR 93h:26018 3b
  • [KaLa98] A. Kachenas and A. Laurinchikas, On Dirichlet series associated with some parabolic forms (Russian), Liet. Mat. Rink. 38 (1998), 82-97. English transl. in: Lithuanian Math. J. 38 (1998) (to appear). CMP 99:06 6
  • [KaSt58] S. Kachmazh [S. Kaczmarz] and G. Shte[??]ingauz [H. Steinhaus], Theory of orthogonal series (Russian), Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958. MR 20:1148 3c
  • [Kah97] J.-P. Kahane, General properties of Taylor series 1896-1996, J. Fourier Anal. Appl. 3 (1997), Special Issue, 907-911. CMP 98:09 4d
  • [Kah$99^+$] J.-P. Kahane, Baire theory in Fourier and Taylor series (Proc. Conf., Philadelphia, PA, 1996) (to appear). 4d
  • [Kan80] A. N. Kanatnikov, Limiting sets along sequences of compacta (Russian), Dokl. Akad. Nauk SSSR 253 (1980), 14-17. English transl. in: Soviet Math. Dokl. 22 (1980), 5-9. MR 82g:30056 4b
  • [Kan84] A. N. Kanatnikov, Limit sets of meromorphic functions with respect to sequences of compacta (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 1196-1213. English transl. in: Math. USSR-Izv. 25 (1985), 501-517. MR 86k:30038 4b
  • [KaVo92] A. A. Karatsuba and S. M. Voronin, The Riemann zeta-function, Walter de Gruyter, Berlin, 1992. MR 93h:11096 6
  • [KaPa$99^+$] E. S. Katsoprinakis and M. Papadimitrakis, Extensions of a theorem of Marcinkiewicz-Zygmund and of Rogosinski's formula and an application to universal Taylor series, Proc. Amer. Math. Soc. (to appear). CMP 99:01 4d
  • [Kha61a] S. Ya. Khavinson, Some problems concerning the completeness of systems (Russian), Dokl. Akad. Nauk SSSR 137 (1961), 793-796. English transl. in: Soviet Math. Dokl. 2 (1961), 358-361. MR 23:A1044 1d,4d
  • [Kha61b] S. Ya. Khavinson, On approximation, with reference to the size of the coefficients of the approximants (Russian), Trudy Mat. Inst. Steklov. 60 (1961), 304-324. English transl. in: Amer. Math. Soc. Transl. (2) 44 (1965), 67-88. MR 25:183 4d
  • [Kit82] C. Kitai, Invariant closed sets for linear operators, Thesis, Univ. of Toronto, Toronto, 1982. 1a,1b,1c,2a,2b,2c,2d,5
  • [Kör89] T. W. Körner, Universal trigonometric series with rapidly decreasing coefficients, Commutative Harmonic Analysis (Proc. Conf., Canton, NY, 1987), 115-149, Amer. Math. Soc., Providence, RI, 1989. MR 90g:42011 3c
  • [Koz50] V. Ya. Kozlov, On complete systems of orthogonal functions (Russian), Mat. Sb. (N.S.) 26(68) (1950), 351-364. MR 12:174g 3c
  • [Kro74] V. G. Krotov, Representation of measurable functions by series in the Faber-Schauder system, and universal series (Russian), Dokl. Akad. Nauk SSSR 214 (1974), 1258-1261. English transl. in: Soviet Math. Dokl. 15 (1974), 351-355. MR 51:1262 3c
  • [Kro75] V. G. Krotov, Universal Fourier series in the Faber-Schauder system (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 30 (1975), no. 4, 53-58. English transl. in: Moscow Univ. Math. Bull. 30 (1975), no. 3-4, 101-105. MR 54:5726 3c
  • [Kro77] V. G. Krotov, Representation of measurable functions by series in the Faber-Schauder system, and universal series (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 215-229. English transl. in: Math. USSR-Izv. 11 (1977), 205-218. MR 55:10954 3c
  • [Kro91] V. G. Krotov, On the smoothness of universal Marcinkiewicz functions and universal trigonometric series (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 1991, no. 8, 26-31. English transl. in: Soviet Math. (Iz. VUZ) 35 (1991), no. 8, 24-28. MR 94a:42002 3b,3c
  • [Lam74] C. W. Lamb, Representation of functions as limits of martingales, Trans. Amer. Math. Soc. 188 (1974), 395-405. MR 49:4087 3b
  • [Lau79a] A. Laurincikas, Distribution des valeurs de certaines séries de Dirichlet, C. R. Acad. Sci. Paris Sér. A 289 (1979), A43-A45. MR 80g:10038 6
  • [Lau79b] A. Laurin\v{c}ikas, Sur les séries de Dirichlet et les polynômes trigonométriques, Séminaire de Théorie des Nombres 1978-1979 (1979), Exposé no. 24. MR 81m:10080 6
  • [Lau82] A. Laurinchikas, Distribution of values of generating Dirichlet series of multiplicative functions (Russian), Litovsk. Mat. Sb. 22 (1982), no. 1, 101-111. English transl. in: Lithuanian Math. J. 22 (1982), 56-63. MR 83m:10074 6
  • [Lau83] A. Laurinchikas, The universality theorem (Russian), Litovsk. Mat. Sb. 23 (1983), no. 3, 53-62. English transl. in: Lithuanian Math. J. 23 (1983), 283-289. MR 85d:11083 6
  • [Lau84] A. Laurinchikas, The universality theorem. II (Russian), Litovsk. Mat. Sb. 24 (1984), no. 2, 113-121. English transl. in: Lithuanian Math. J. 24 (1984), 143-149. MR 86c:11064 6
  • [Lau95] A. Laurinchikas, On the universality of the Riemann zeta-function (Russian), Liet. Mat. Rink. 35 (1995), 502-507. English transl. in: Lithuanian Math. J. 35 (1995), 399-402. MR 98c:110866
  • [Lau96] A. Laurin\v{c}ikas, Limit theorems for the Riemann zeta-function, Kluwer Acad. Publ., Dordrecht, 1996. MR 96m:11070 6
  • [Lau97] A. Laurinchikas, The universality of the Lerch zeta-function (Russian), Liet. Mat. Rink. 37 (1997), 367-375. English transl. in: Lithuanian Math. J. 37 (1997), 275-280. MR 98k:11122 6
  • [Lau98a] A. Laurinchikas, On the Lerch zeta function with rational parameters (Russian), Liet. Mat. Rink. 38 (1998), 113-124. English transl. in: Lithuanian Math. J. 38 (1998) (to appear). CMP 99:06 6
  • [Lau98b] A. Laurin\v{c}ikas, On the Matsumoto zeta-function, Acta Arith. 84 (1998), 1-16. CMP 98:10 6
  • [LaMa$99^+$] A. Laurin\v{c}ikas and K. Matsumoto, The universality of zeta-functions attached to certain cusp forms, preprint. 6
  • [Leó99] F. León-Saavedra, Universal functions on the unit ball and the polydisk, Function spaces (Proc. Conf., Edwardsville, IL, 1998), Amer. Math. Soc., Providence, RI, 1999. 4a
  • [LeMo97] F. León-Saavedra and A. Montes-Rodríguez, Linear structure of hypercyclic vectors, J. Funct. Anal. 148 (1997), 524-545. MR 98h:47028b 2b,4a,4c,5
  • [LeMo$99^+$] F. León-Saavedra and A. Montes-Rodríguez, Spectral theory and hypercyclic subspaces, Trans. Amer. Math. Soc. (to appear). 2a,2b,2d,4a,4c,5
  • [Lor53] G. G. Lorentz, Bernstein polynomials, Univ. of Toronto Press, Toronto, 1953. MR 15:217a 3a
  • [Luh70] W. Luh, Approximation analytischer Funktionen durch überkonvergente Potenzreihen und deren Matrix-Transformierten, Mitt. Math. Sem. Giessen 88 (1970). MR 43:6411 3a,4d
  • [Luh74a] W. Luh, Über die Anwendung von Übersummierbarkeit zur Approximation regulärer Funktionen, Topics in Analysis (Colloq. Math. Anal., Jyväskylä, 1970), 260-267, Springer, Berlin, 1974. MR 52:3492 3a,4d
  • [Luh74b] W. Luh, Über die Summierbarkeit der geometrischen Reihe, Mitt. Math. Sem. Giessen 113 (1974). MR 56:910 4e
  • [Luh76] W. Luh, Über den Satz von Mergelyan, J. Approx. Theory 16 (1976), 194-198. MR 55:671 4d
  • [Luh78] W. Luh, On universal functions, Fourier Analysis and Approximation Theory (Proc. Colloq., Budapest, 1976), Vol. II, 503-511, North-Holland, Amsterdam, 1978. MR 80m:30003 2a,3a,4a,4b
  • [Luh79a] W. Luh, Über cluster sets analytischer Funktionen, Acta Math. Acad. Sci. Hungar. 33 (1979), 137-142. MR 80f:30022 4a,4b
  • [Luh79b] W. Luh, Universalfunktionen in einfach zusammenhängenden Gebieten, Aequationes Math. 19 (1979), 183-193. MR 80m:30040 3a,4b
  • [Luh86] W. Luh, Universal approximation properties of overconvergent power series on open sets, Analysis 6 (1986), 191-207. MR 87m:30058 4d
  • [Luh88] W. Luh, Holomorphic monsters, J. Approx. Theory 53 (1988), 128-144. MR 90a:30091 4b
  • [Luh93] W. Luh, Universal functions and conformal mappings, Serdica 19 (1993), 161-166. MR 94k:30012 4a
  • [Luh96] W. Luh, Entire functions with various universal properties, Complex Variables Theory Appl. 31 (1996), 87-96. MR 97m:30030 4a,4c
  • [Luh97] W. Luh, Multiply universal holomorphic functions, J. Approx. Theory 89 (1997), 135-155. MR 98e:30043 4b,4c,4d
  • [LMM98] W. Luh, V. A. Martirosian, and J. Müller, T-universal functions with lacunary power series, Acta Sci. Math. (Szeged) 64 (1998), 67-79. MR 99f:30055 4a
  • [LMM$99^+$] W. Luh, V. A. Martirosian, and J. Müller, Universal entire functions with gap power series, Indag. Math. (N.S.) (to appear). 4a,4b
  • [LuLu85] S. Yu. Lukashenko and T. P. Lukashenko, The rate of growth of coefficients of universal series (Russian), Probability Theory, Theory of Random Processes, and Functional Analysis (Russian) (Proc. Conf., Moscow, 1984), 128-130, Moskov. Gos. Univ., Moscow, 1985. CMP 90:06 3c
  • [Mcc92] C. R. MacCluer, Chaos in linear distributed systems, J. Dynam. Systems Measurement Control 114 (1992), 322-324. Zbl 778:93038 5
  • [Mac52] G. R. MacLane, Sequences of derivatives and normal families, J. Analyse Math. 2 (1952/53), 72-87. MR 14:741d 2a,4c
  • [Mar35] J. Marcinkiewicz, Sur les nombres dérivés, Fund. Math. 24 (1935), 305-308. Zbl 11:107 3b
  • [MaPe$99^+$] F. Martínez-Giménez and A. Peris, Hypercyclic and chaotic backward shift operators on Köthe echelon spaces, preprint. 2c,2d,5
  • [Mat93] V. Matache, Notes on hypercyclic operators, Acta Sci. Math. (Szeged) 58 (1993), 401-410. MR 94k:47011 2d
  • [Mat95] V. Matache, Spectral properties of operators having dense orbits, Topics in Operator Theory, Operator Algebras and Applications (Proc. Conf., Timi\c{s}oara, 1994), 221-237, Inst. Math. Roman. Acad., Bucharest, 1995. MR 98j:47002 2d
  • [Mth94] V. Mathew, A note on hypercyclic operators on the space of entire sequences, Indian J. Pure Appl. Math. 25 (1994), 1181-1184. MR 95i:47055 4c,5
  • [Maz37] S. Mazurkiewicz, Sur l'approximation des fonctions continues d'une variable réelle par les sommes partielles d'une série de puissances, C. R. Soc. Sci. Lett. Varsovie Cl. III 30 (1937), 25-30. Zbl 17:204 1c,3a,4d
  • [MeNe$99^+$] A. Melas and V. Nestoridis, Universality of Taylor series as a generic property of holomorphic functions, preprint. 3c,4d
  • [MNP97] A. Melas, V. Nestoridis, and I. Papadoperakis, Growth of coefficients of universal Taylor series and comparison of two classes of functions, J. Anal. Math. 73 (1997), 187-202. CMP 98:10 4d
  • [Men45] D. Menchoff, Sur les séries trigonométriques universelles, C. R. (Dokl.) Acad. Sci. URSS (N.S.) 49 (1945), 79-82. MR 7:435e 1c,3c
  • [Men47] D. E. Men$'$shov, On the partial sums of trigonometric series (Russian), Mat. Sb. (N.S.) 20(62) (1947), 197-238. MR 8:577a 1c,3c
  • [Men48] D. Men$'$shov, On the convergence in measure of trigonometric series (Russian), Dokl. Akad. Nauk SSSR (N.S.) 59 (1948), 849-852. MR 9:426b 3c
  • [Men50] D. E. Men$'$shov, On convergence in measure of trigonometric series (Russian), Trudy Mat. Inst. Steklov. 32 (1950). English transl. in: Amer. Math. Soc. Transl. (1) 3 (1962), 196-270. MR 12:254g 3c
  • [Men54] D. E. Men$'$shov, On the limits of indeterminateness of partial sums of universal trigonometric series (Russian), Moskov. Gos. Univ. Uchen. Zap. 165 Mat. 7 (1954), 3-33. English transl. in: Amer. Math. Soc. Transl. (2) 111 (1978), 1-33. MR 16:467a 3c
  • [Men63] D. Men$'$shov, On universal sequences of functions (Russian), Dokl. Akad. Nauk SSSR 151 (1963), 1283-1285. English transl. in: Soviet Math. Dokl. 4 (1963), 1191-1193. MR 27:3967 3c
  • [Men64] D. E. Men$'$shov, Universal sequences of functions (Russian), Mat. Sb. (N.S.) 65(107) (1964), 272-312. English transl. in: Amer. Math. Soc. Transl. (2) 111 (1978), 81-116. MR 31:305 3c
  • [Mil93] J. B. Miller, Generalized functions for the Laplace transform and universal approximants, Generalized Functions and Their Applications (Proc. Symp., Varanasi, 1991), 131-140, Plenum, New York, 1993. MR 94h:46065 4a
  • [MiMi99] T. L. Miller and V. G. Miller, Local spectral theory and orbits of operators, Proc. Amer. Math. Soc. 127 (1999), 1029-1037. MR 99f:47007 2d
  • [Mil97] V. G. Miller, Remarks on finitely hypercyclic and finitely supercyclic operators, Integral Equations Operator Theory 29 (1997), 110-115. MR 98i:47017 2c,2d
  • [Mon96a] A. Montes-Rodríguez, A note on Birkhoff open sets, Complex Variables Theory Appl. 30 (1996), 193-198. MR 97h:30056 4a
  • [Mon96b] A. Montes-Rodríguez, Banach spaces of hypercyclic vectors, Michigan Math. J. 43 (1996), 419-436. MR 98g:47027 1c,2b,4a,5
  • [Mon97] A. Montes-Rodríguez, Vector spaces of universal functions, Complex Methods in Approximation Theory (Proc. Workshop, Almería, 1995), 113-116, Univ. Almería, Almería, 1997. MR 99c:30067 2b,4a,5
  • [Mon98a] A. Montes-Rodríguez, Composition operators and hypercyclic vectors, Studies on Composition Operators (Proc. Conf., Laramie, WY, 1996), 157-165, Amer. Math. Soc., Providence, RI, 1998. MR 98k:47063 2b,4a
  • [Mon98b] A. Montes-Rodríguez, A Birkhoff theorem for Riemann surfaces, Rocky Mountain J. Math. 28 (1998), 663-693. CMP 99:03 4a
  • [Nes96] V. Nestoridis, Universal Taylor series, Ann. Inst. Fourier (Grenoble) 46 (1996), 1293-1306. MR 97k:30001 1c,3c,4d
  • [Nes$99^+$] V. Nestoridis, An extension of the notion of universal Taylor series, Computational Methods and Function Theory 1997 (Proc. Conf., Nicosia, 1997) (to appear). 3c,4d
  • [Pál14] J. Pál, Zwei kleine Bemerkungen, Tôhoku Math. J. 6 (1914/15), 42-43. JFM 45:634 1d,3a
  • [Pál15] G. Pál, On some generalisations of a theorem of Weierstrass (Hungarian), Math. Phys. Lapok 24 (1915), 243-247. JFM 45:634 3a
  • [Pav92] M. Pavone, Chaotic composition operators on trees, Houston J. Math. 18 (1992), 47-56. MR 93c:47038 4a
  • [Per98] A. Peris, Personal communications, 1998. 1b,2b
  • [Per$99^+$] A. Peris, Chaotic polynomials on Fréchet spaces, Proc. Amer. Math. Soc. (to appear). CMP 98:09 2d,4c
  • [Pog75] N. B. Pogosyan, Representation of measurable functions by orthogonal series (Russian), Mat. Sb. (N.S.) 98(140) (1975), no. 1, 102-112. English transl. in: Math. USSR-Sb. 27 (1975), 93-102. MR 58:6901a 3d
  • [Pog76] N. B. Pogosyan, Representation of measurable functions by bases in $L\sb{p}[0, 1]$, $(p\geq 2)$ (Russian), Akad. Nauk Armyan. SSR Dokl. 63 (1976), 205-209. MR 58:6901b 3c
  • [PrAz92] V. Protopopescu and Y. Y. Azmy, Topological chaos for a class of linear models, Math. Models Methods Appl. Sci. 2 (1992), 79-90. MR 93c:58126 3e,5
  • [Rea88] C. J. Read, The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators, Israel J. Math. 63 (1988), 1-40. MR 90b:47013 2b
  • [Rei77] A. Reich, Universelle Werteverteilung von Eulerprodukten, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1977, 1-17. MR 58:27862 6
  • [Rei80] A. Reich, Werteverteilung von Zetafunktionen, Arch. Math. 34 (1980), 440-451. MR 82b:10051 6
  • [Rei82] A. Reich, Zur Universalität und Hypertranszendenz der Dedekindschen Zetafunktion, Abh. Braunschweig. Wiss. Ges. 33 (1982), 197-203. MR 84h:12016 6
  • [Rol69] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22. MR 39:3292 2a,2d,5
  • [Sal91] H. Salas, A hypercyclic operator whose adjoint is also hypercyclic, Proc. Amer. Math. Soc. 112 (1991), 765-770. MR 91j:47016 2a,2c,2d,5
  • [Sal95] H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), 993-1004. MR 95e:47042 2c,2d,5
  • [Sal$99^+$] H. Salas, Supercyclicity and weighted shifts, preprint. 5
  • [Scm97] C. Schmoeger, On the norm-closure of the class of hypercyclic operators, Ann. Polon. Math. 65 (1997), 157-161. MR 98b:47050 2d
  • [Scn97] I. Schneider, Schlichte Funktionen mit universellen Approximationseigenschaften, Mitt. Math. Sem. Giessen 230 (1997). MR 98c:30022 4b,4c,4d
  • [SeWa41] W. Seidel and J. L. Walsh, On approximation by euclidean and non-euclidean translations of an analytic function, Bull. Amer. Math. Soc. 47 (1941), 916-920. MR 4:10a 4a
  • [Sel51] A. I. Seleznev, On universal power series (Russian), Mat. Sb. (N.S.) 28(70) (1951), 453-460. MR 13:23e 3a,4d
  • [SeDo77] A. I. Seleznev and L. K. Dodunova, Some classes of universal series (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 1977, no. 12(187), 92-98. English transl. in: Soviet Math. (Iz. VUZ) 21 (1977), no. 12, 69-73. MR 58:17056 4d
  • [SeDo82] A. I. Seleznev and L. K. Dodunova, On two theorems of A. F. Leontev on the completeness of subsystems of Faber and Jacobi polynomials (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 1982, no. 4, 51-55. English transl. in: Soviet Math. (Iz. VUZ) 26 (1982), no. 4, 60-66. MR 84j:30061 4d
  • [SMV77] A. I. Seleznev, I. V. Motova, and V. A. Volokhin, The completeness of systems of functions and universal series (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 1977, no. 11(186), 84-90. English transl. in: Soviet Math. (Iz. VUZ) 21 (1977), no. 11, 70-75. MR 58:22496 1d,4d
  • [Sha93] J. H. Shapiro, Composition operators and classical function theory, Springer, New York, 1993. MR 94k:47049 1b,2c,2d,4a
  • [Shk93] S. A. Shkarin, On the growth of $D$-universal functions (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1993, no. 6, 80-83. English transl. in: Moscow Univ. Math. Bull. 48 (1993), no. 6, 49-51. MR 96i:30022 4c
  • [Sie38] W. Sierpi\'{n}ski, Sur une série de puissances universelle pour les fonctions continues, Studia Math. 7 (1938), 45-48. Zbl 18:114 1d,3a
  • [Söv77] A. Sövegjártó, A note on universal elements (Hungarian), Mat. Lapok 28 (1977/80), 327-328. MR 82f:47044 1c
  • [Str81] K. R. Stromberg, Introduction to classical real analysis, Wadsworth International, Belmont, CA, 1981. MR 82c:26002 3b
  • [Tal57] A. A. Talalyan, On the convergence almost everywhere of subsequences of partial sums of general orthogonal series (Russian), Akad. Nauk Armyan. SSR Izv. Fiz.-Mat. Estest. Tekhn. Nauki 10 (1957), no. 3, 17-34. MR 19:742b 1d,3c,3d
  • [Tal59a] A. A. Talalyan, Universal orthogonal series (Russian), Izv. Akad. Nauk Armyan. SSR Ser. Fiz.-Mat. Nauk 12 (1959), no. 1, 27-42. MR 21:5110 3c
  • [Tal59b] A. A. Talalyan, On series in bases of $L\sb{p}$ space which are universal with respect to permutations (Russian), Akad. Nauk Armyan. SSR Dokl. 28 (1959), 145-150. MR 22:9853 3d
  • [Tal60a] A. A. Talalyan, On the convergence and summability almost everywhere of general orthogonal series (Russian), Izv. Akad. Nauk Armyan. SSR Ser. Fiz.-Mat. Nauk 13 (1960), no. 2, 31-61. MR 27:2787 3d
  • [Tal60b] A. A. Talalyan, Series universal with respect to rearrangement (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 567-604. MR 22:9854 3d
  • [Tal60c] A. A. Talalyan, The representation of measurable functions by series (Russian), Uspekhi Mat. Nauk 15 (1960), no. 5(95), 77-141. English transl. in: Russian Math. Surveys 15 (1960), no. 5, 75-136. MR 23:A2704 3c,3d
  • [ThTo85] B. Thorpe and L. Tomm, Universal approximation by regular weighted means, Pacific J. Math. 117 (1985), 443-455. MR 86f:30002 4e
  • [TiLi95] L. X. Tian and Z. R. Liu, Nonwandering operators in infinite-dimensional linear spaces (Chinese), Acta Math. Sci. (Chinese) 15 (1995), 455-460. MR 97e:47012 2d
  • [TiLu96] L. Tian and D. Lu, The property of nonwandering operator (Chinese), Appl. Math. Mech. 17 (1996), 151-156. English transl. in: Appl. Math. Mech. (English Ed.) 17 (1996), 155-161. MR 97a:47029 2d
  • [Tod85] V. T. Todorov, Linear differential operators are transitive, Godishnik Vissh. Uchebn. Zaved. Prilozhna Mat. 21 (1985), no. 4, 17-24. MR 88i:58014 3e
  • [ToKo80] V. Todorov and O. Korov, An infinitely differentiable function, the set of derivatives of which is everywhere dense (Russian), Mathematics and Education in Mathematics (Bulgarian) (Proc. Conf., Sunny Beach, 1980), 91-94, B$''$lg. Akad. Nauk., Sofia, 1980. Zbl 573:26014 3e
  • [ToTr82] L. Tomm and R. Trautner, A universal power series for approximation of measurable functions, Analysis 2 (1982), 1-6. MR 85e:30004 4d
  • [Tuy59] Kh. Tu[??]i [H. Tuy], The structure of measurable functions (Russian), Dokl. Akad. Nauk SSSR 126 (1959), 37-40. MR 21:5000 3b
  • [Tuy60] Kh. Tu[??]i [H. Tuy], The ``universal primitive'' of J. Marcinkiewicz (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 617-628. MR 22:3770 3b
  • [Vor75a] S. M. Voronin, A theorem on the distribution of values of the Riemann zeta-function (Russian), Dokl. Akad. Nauk SSSR 221 (1975), 771. English transl. in: Soviet Math. Dokl. 16 (1975), 410. MR 52:3079 6
  • [Vor75b] S. M. Voronin, A theorem on the ``universality'' of the Riemann zeta-function (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 475-486. English transl. in: Math. USSR-Izv. 9 (1975), 443-453. MR 57:12419 6
  • [Vor77] S. M. Voronin, Analytic properties of the Dirichlet generating series of arithmetic objects (Russian), Thesis, Moscow, 1977. 6
  • [Vor84] S. M. Voronin, On the distribution of zeros of some Dirichlet series (Russian), Trudy Mat. Inst. Steklov. 163 (1984), 74-77. English transl. in: Proc. Steklov Inst. Math. 163 (1985), 89-92. MR 86g:11048 6
  • [Web95] G. F. Webb, Periodic and chaotic behavior in structured models of cell population dynamics, Recent Developments in Evolution Equations (Proc. Int. Seminar, Glasgow, 1994), 40-49, Longman Scientific and Technical, Harlow, 1995. MR 98a:92006 2a,3e
  • [Zap88] P. Zappa, On universal holomorphic functions, Boll. Un. Mat. Ital. A (7) 2 (1988), 345-352. MR 90g:30039 4a

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 47A99, 54H99, 47--02, 54--02

Retrieve articles in all journals with MSC (1991): 47A99, 54H99, 47--02, 54--02


Additional Information

Karl-Goswin Grosse-Erdmann
Affiliation: Fachbereich Mathematik, Fernuniversität Hagen, 58084 Hagen, Germany
Email: kg.grosse-erdmann@fernuni-hagen.de

DOI: https://doi.org/10.1090/S0273-0979-99-00788-0
Keywords: Universal families, hypercyclic operators
Received by editor(s): August 4, 1998
Received by editor(s) in revised form: May 26, 1999
Published electronically: June 23, 1999
Additional Notes: This survey grew out of a talk given by the author on the occasion of the 60th birthday of Prof. Dr. W. Beekmann at the Fernuniversität Hagen, November 13, 1997.
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society