Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: V. I. Arnold and B. A. Khesin
Title: Topological methods in hydrodynamics
Additional book information: Springer, New York, 1998, xv + 374 pp., ISBN 0-387-94947-X, $59.95

References [Enhancements On Off] (What's this?)

  • 1. V.I. ARNOLD, Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluids parfaits, Ann. Inst. Grenoble, 16, (1966), 319-361. MR 34:1956
  • 2. V.I. ARNOLD, Mathematical methods of classical mechanics, Springer-Verlag, GTM 60, 1978. MR 57:14033b
  • 3. Y. BRENIER, The least action principle and the related concept of generalized flows for incompressible perfect fluids, J. Amer. Math. Soc., 2, (1989), no. 2, 225-255, MR 90g:58012; The dual least action problem for an ideal, incompressible fluid, Arch. Rational Mech. Anal., 122, (1993), no. 4, 323-351, MR 94f:58039; Minimal geodesics on groups of volume-preserving maps and generalized solutions to the Euler equations, Comm. Pure Appl. Math., 52, (1999), 411-452. CMP 99:06
  • 4. R. CAMASSA AND D.D. HOLM An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, (1993), 1661-1664. MR 94f:35121
  • 5. A. CONSTANTIN AND J. ESCHER, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181, (1998), 229-243. CMP 99:07
  • 6. R. DIPERNA AND A. MAJDA, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys., 108, (1987), 667-689. MR 88a:35187
  • 7. D. EBIN AND J. MARSDEN, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92, (1970), 102-163. MR 42:6865
  • 8. B. FUCHSSTEINER AND A.S. FOKAS, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66. MR 84j:58046
  • 9. M.H. FREEDMAN AND Z.-X., HE, Divergence-free fields: energy and asymptotic crossing number, Annals of Math., 134, (1991), no. 1, 189-229. MR 93a:58040
  • 10. D.D. HOLM, B.A. KUPERSHMIDT, Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity, Phys. D 6 (1983), no. 3, 347-363. MR 85e:58045
  • 11. D.D. HOLM, J.E. MARSDEN, AND T.S. RATIU, Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math. 137, (1998), 1-81. MR 99e:58070
  • 12. D.D. HOLM, J.E MARSDEN, T. RATIU, AND A. WEINSTEIN, Nonlinear stability of fluid and plasma equilibria, Phys. Rep., 123, (1985), 1-116. MR 86i:76027
  • 13. J.E. MARSDEN, A group theoretic approach to the equations of plasma physics, Canad. Math. Bull., 25, (1982), no. 2, 129-142. MR 83h:58044
  • 14. J.E. MARSDEN AND T.S. RATIU, Introduction to Mechanics and Symmetry, Springer-Verlag, Second Edition, 1999. MR 95i:58073
  • 15. J.E. MARSDEN, T.S. RATIU, AND S. SHKOLLER, A nonlinear analysis of the averaged Euler equations and a new diffeomorphism group, Geom. Funct. Anal., to appear.
  • 16. MARSDEN, J.E., T. RATIU, AND A. WEINSTEIN, Semidirect products and reduction in mechanics, Trans. Am. Math. Soc., 281, (1984), 147-177. MR 84k:58081
  • 17. J.E. MARSDEN AND J. SCHEURLE, The reduced Euler-Lagrange equations, Dynamics and control of mechanical systems (Waterloo, ON, 1992), 139-164, Fields Inst. Commun., 1, Amer. Math. Soc., Providence, RI, 1993. MR 95a:58041
  • 18. MARSDEN, J.E. AND A. WEINSTEIN, Coadjoint orbits, vortices and Clebsch variables for incompressible fluids, Physica D, 7, (1983), 305-323. MR 85g:58039
  • 19. MARSDEN, J.E. AND A. WEINSTEIN, The Hamiltonian structure of the Maxwell-Vlasov equations, Phys. D, 4 (1982), no. 3, 394-406. MR 84b:82037
  • 20. G. MISIOEK, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24, (1998), 203-208. MR 99d:58018
  • 21. S. SHKOLLER, Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics, J. Funct. Anal., 160, (1998), 337-365. CMP 99:06
  • 22. S. SHKOLLER, The geometry and analysis of non-Newtonian fluids and vortex methods, (1999), E-print math.AP/9908109.
  • 23. A.I. SHNIRELMAN, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Mat. Sb. (N.S.), 128(170), (1985), 82-109, 144, MR 87d:58034; Attainable diffeomorphisms, Geom. Funct. Anal., 3, (1993), 279-294, MR 94f:58021; Generalized fluid flows, their approximation and applications, Geom. Funct. Anal., 4, (1994), 586-620. MR 95j:58041

Review Information:

Reviewer: Steve Shkoller
Affiliation: University of California, Davis
Email: shkoller@math.ucdavis.edu
Journal: Bull. Amer. Math. Soc. 37 (2000), 175-181
MSC (2000): Primary 22-XX, 35-XX, 53-XX, 58-XX, 76Bxx, 76Exx
DOI: https://doi.org/10.1090/S0273-0979-99-00855-1
Published electronically: December 21, 1999
Review copyright: © Copyright 2000 American Mathematical Society
American Mathematical Society