Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

On the mathematical foundations of learning


Authors: Felipe Cucker and Steve Smale
Journal: Bull. Amer. Math. Soc. 39 (2002), 1-49
MSC (2000): Primary 68T05, 68P30
DOI: https://doi.org/10.1090/S0273-0979-01-00923-5
Published electronically: October 5, 2001
MathSciNet review: 1864085
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Lars V. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable; International Series in Pure and Applied Mathematics. MR 510197
  • 2. N. Aronszajn, Theory of reproducing kernels, Transactions of the Amer. Math. Soc.68 (1950), 337-404. MR 14:479c
  • 3. Andrew R. Barron, Complexity regularization with application to artificial neural networks, Nonparametric functional estimation and related topics (Spetses, 1990) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 335, Kluwer Acad. Publ., Dordrecht, 1991, pp. 561–576. MR 1154352
  • 4. Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR 0482275
  • 5. M. Š. Birman and M. Z. Solomjak, Piecewise polynomial approximations of functions of classes 𝑊_{𝑝}^{𝛼}, Mat. Sb. (N.S.) 73 (115) (1967), 331–355 (Russian). MR 0217487
  • 6. Christopher M. Bishop, Neural networks for pattern recognition, The Clarendon Press, Oxford University Press, New York, 1995. With a foreword by Geoffrey Hinton. MR 1385195
  • 7. Åke Björck, Numerical methods for least squares problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1386889
  • 8. Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale, Complexity and real computation, Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp. MR 1479636
  • 9. Bernd Carl and Irmtraud Stephani, Entropy, compactness and the approximation of operators, Cambridge Tracts in Mathematics, vol. 98, Cambridge University Press, Cambridge, 1990. MR 1098497
  • 10. Peter Craven and Grace Wahba, Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation, Numer. Math. 31 (1978/79), no. 4, 377–403. MR 516581, https://doi.org/10.1007/BF01404567
  • 11. M. J. Donahue, L. Gurvits, C. Darken, and E. Sontag, Rates of convex approximation in non-Hilbert spaces, Constr. Approx. 13 (1997), no. 2, 187–220. MR 1437210, https://doi.org/10.1007/s003659900038
  • 12. Lokenath Debnath and Piotr Mikusiński, Introduction to Hilbert spaces with applications, 2nd ed., Academic Press, Inc., San Diego, CA, 1999. MR 1670332
  • 13. J. P. Dedieu and M. Shub, Newton’s method for overdetermined systems of equations, Math. Comp. 69 (2000), no. 231, 1099–1115. MR 1651750, https://doi.org/10.1090/S0025-5718-99-01115-1
  • 14. Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
  • 15. Jean Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, Constructive theory of functions of several variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976) Springer, Berlin, 1977, pp. 85–100. Lecture Notes in Math., Vol. 571. MR 0493110
  • 16. D. E. Edmunds and H. Triebel, Function spaces, entropy numbers, differential operators, Cambridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996. MR 1410258
  • 17. Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio, Regularization networks and support vector machines, Adv. Comput. Math. 13 (2000), no. 1, 1–50. MR 1759187, https://doi.org/10.1023/A:1018946025316
  • 18. David Haussler, Decision-theoretic generalizations of the PAC model for neural net and other learning applications, Inform. and Comput. 100 (1992), no. 1, 78–150. MR 1175977, https://doi.org/10.1016/0890-5401(92)90010-D
  • 19. Harry Hochstadt, Integral equations, John Wiley & Sons, New York-London-Sydney, 1973. Pure and Applied Mathematics. MR 0390680
  • 20. A. N. Kolmogorov and S. V. Fomīn, Introductory real analysis, Dover Publications, Inc., New York, 1975. Translated from the second Russian edition and edited by Richard A. Silverman; Corrected reprinting. MR 0377445
  • 21. A. N. Kolmogorov and V. M. Tihomirov, 𝜖-entropy and 𝜖-capacity of sets in function spaces, Uspehi Mat. Nauk 14 (1959), no. 2 (86), 3–86 (Russian). MR 0112032
  • 22. Wee Sun Lee, Peter L. Bartlett, and Robert C. Williamson, The importance of convexity in learning with squared loss, IEEE Trans. Inform. Theory 44 (1998), no. 5, 1974–1980. MR 1664079, https://doi.org/10.1109/18.705577
  • 23. Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, https://doi.org/10.1007/BF02399203
  • 24. George G. Lorentz, Manfred v. Golitschek, and Yuly Makovoz, Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 304, Springer-Verlag, Berlin, 1996. Advanced problems. MR 1393437
  • 25. W.S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics 5 (1943), 115-133. MR 6:12a
  • 26. Jean Meinguet, Multivariate interpolation at arbitrary points made simple, Z. Angew. Math. Phys. 30 (1979), no. 2, 292–304 (English, with French summary). MR 535987, https://doi.org/10.1007/BF01601941
  • 27. M.L. Minsky and S.A. Papert, Perceptrons, MIT Press, 1969.
  • 28. P. Niyogi, The informational complexity of learning, Kluwer Academic Publishers, 1998.
  • 29. A. Pietsch, Eigenvalues and 𝑠-numbers, Mathematik und ihre Anwendungen in Physik und Technik [Mathematics and its Applications in Physics and Technology], vol. 43, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987. MR 917067
    Albrecht Pietsch, Eigenvalues and 𝑠-numbers, Cambridge Studies in Advanced Mathematics, vol. 13, Cambridge University Press, Cambridge, 1987. MR 890520
  • 30. Allan Pinkus, 𝑛-widths in approximation theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 7, Springer-Verlag, Berlin, 1985. MR 774404
  • 31. T. Poggio and C.R. Shelton, Machine learning, machine vision, and the brain, AI Magazine 20 (1999), 37-55.
  • 32. David Pollard, Convergence of stochastic processes, Springer Series in Statistics, Springer-Verlag, New York, 1984. MR 762984
  • 33. G.V. Rozenblum, M.A. Shubin, and M.Z. Solomyak, Partial differential equations vii: Spectral theory of differential operators, Encyclopaedia of Mathematical Sciences, vol. 64, Springer-Verlag, 1994.
  • 34. I.J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. 39 (1938), 811-841.
  • 35. Igor R. Shafarevich, Basic algebraic geometry. 1, 2nd ed., Springer-Verlag, Berlin, 1994. Varieties in projective space; Translated from the 1988 Russian edition and with notes by Miles Reid. MR 1328833
  • 36. S. Smale, On the Morse index theorem, J. Math. Mech. 14 (1965), 1049–1055. MR 0182027
    S. Smale, Corrigendum: “On the Morse index theorem”, J. Math. Mech. 16 (1967), 1069–1070. MR 0205276
  • 37. -, Mathematical problems for the next century, Mathematics: Frontiers and Perspectives (V. Arnold, M. Atiyah, P. Lax, and B. Mazur, eds.), AMS, 2000, pp. 271-294. CMP 2000:13
  • 38. S. Smale and D.-X. Zhou, Estimating the approximation error in learning theory, Preprint, 2001.
  • 39. Michael E. Taylor, Partial differential equations, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996. Basic theory. MR 1395147
    Michael E. Taylor, Partial differential equations. I, Applied Mathematical Sciences, vol. 115, Springer-Verlag, New York, 1996. Basic theory. MR 1395148
  • 40. L.G. Valiant, A theory of the learnable, Communications of the ACM27 (1984), 1134-1142.
  • 41. S. van de Geer, Empirical processes in m-estimation, Cambridge University Press, 2000.
  • 42. Vladimir N. Vapnik, Statistical learning theory, Adaptive and Learning Systems for Signal Processing, Communications, and Control, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR 1641250
  • 43. P. Venuvinod, Intelligent production machines: benefiting from synergy amongst modelling, sensing and learning, Intelligent Production Machines: Myths and Realities, CRC Press LLC, 2000, pp. 215-252.
  • 44. A.G. Vitushkin, Estimation of the complexity of the tabulation problem, Nauka (in Russian), 1959, English Translation appeared as Theory of the Transmission and Processing of the Information, Pergamon Press, 1961.
  • 45. Grace Wahba, Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. MR 1045442
  • 46. R. Williamson, A. Smola, and B. Schölkopf, Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators, Tech. Report NC2-TR-1998-019, NeuroCOLT2, 1998.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 68T05, 68P30

Retrieve articles in all journals with MSC (2000): 68T05, 68P30


Additional Information

Felipe Cucker
Affiliation: Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
Email: macucker@math.cityu.edu.hk

Steve Smale
Affiliation: Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
Address at time of publication: Department of Mathematics, University of California, Berkeley, California 94720
Email: masmale@math.cityu.edu.hk, smale@math.berkeley.edu

DOI: https://doi.org/10.1090/S0273-0979-01-00923-5
Received by editor(s): April 1, 2000
Received by editor(s) in revised form: June 1, 2001
Published electronically: October 5, 2001
Additional Notes: This work has been substantially funded by CERG grant No. 9040457 and City University grant No. 8780043.
Article copyright: © Copyright 2001 American Mathematical Society