Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Selected new aspects of the calculus of variations in the large


Authors: Ivar Ekeland and Nassif Ghoussoub
Journal: Bull. Amer. Math. Soc. 39 (2002), 207-265
MSC (2000): Primary 35J60, 47J30, 58E05; Secondary 57R17
DOI: https://doi.org/10.1090/S0273-0979-02-00929-1
Published electronically: January 4, 2002
MathSciNet review: 1886088
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss some of the recent developments in variational methods while emphasizing new applications to nonlinear problems. We touch on several issues: (i) the formulation of variational set-ups which provide more information on the location of critical points and therefore on the qualitative properties of the solutions of corresponding Euler-Lagrange equations; (ii) the relationships between the energy of variationally generated solutions, their Morse indices, and the Hausdorff measure of their nodal sets; (iii) the gluing of several topological obstructions; (iv) the preservation of critical levels after deformation of functionals; (v) and the various ways to recover compactness in certain borderline variational problems.


References [Enhancements On Off] (What's this?)

  • [A-R] A. Ambrosetti, P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349-381. MR 51:6412
  • [A-CZ] A. Ambrosetti, V. Coti Zelati, Periodic solutions of singular Lagrangian systems, Birkhauser. Boston, Basel, Berlin (1993). MR 95b:58054
  • [Au] T. Aubin: Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren 252, Springer, New York-Heidelberg-Berlin (1982). MR 85j:58002
  • [Ba] A. Bahri: Critical points at infinity in some variational problems, Pitman Research Notes Math. 182, Longman House, Harlow (1989). MR 91h:58022
  • [Ba-Be] A. Bahri, H. Berestycki: A perturbation method in critical point theory and applications T.A.M.S. 267 (1981) 1-32. MR 82j:35059
  • [Ba-Co1] A. Bahri, J. M. Coron: The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 (1991) 106-172. MR 92k:58055
  • [Ba-Co2] A. Bahri, J. M. Coron: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294. MR 89c:35053
  • [Ba-L1] A. Bahri, P. L. Lions: Morse index of some min-max critical points I. Application to multiplicity results. Comm. Pure & App. Math. 41 (1988), 1027-1037. MR 90b:58035
  • [Ba-L2] A. Bahri, P. L. Lions: Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math. XLV (1992), 1205-1215. MR 93m:35077
  • [Ba-Ra] A. Bahri, P. Rabinowitz: Periodic Solutions of Hamiltonian Systems of three-body type, A.I.H.P., Analyse nonlinéaire (1991), 561-649. MR 92k:58223
  • [B-R] V. Benci, P. H. Rabinowitz: Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241-273. MR 80i:58019
  • [Be-L] H. Berestycki, P. L. Lions: Nonlinear scalar field equations, Part I, Arch. Rat. Mech. Anal., 82 (1983), 313-346. Part II 82 (1983), 347-376. MR 84h:35054a
  • [Bo] P. Bolle: On the Bolza problem, J. Diff. Equations, 152 (2) (1999), 274-288. MR 99m:58043
  • [B-G-T] P. Bolle, N. Ghoussoub, H. Tehrani: The Multiplicity of solutions in non-homogenous boundary value problems, Manuscripta Matematica, 101 (2000), 325-350. MR 2001c:58010
  • [B-N] H. Brezis and L. Nirenberg: Positive solution of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. MR 84h:35059
  • [B-C] H. Brezis and J. M. Coron: Multiple solutions of $H$-systems and Rellich's conjecture, Comm. Pure App. Math. 37 (1984), 149-187. MR 85i:53010
  • [C-K-N] L. Caffarelli, R. Kohn, L. Nirenberg: First Order Interpolation Inequality with Weights, Compositio Math. 53 (1984), 259-275. MR 86c:46028
  • [C-G] C. Chambers and N. Ghoussoub: Deformation from symmetry and multiplicity of solutions in non-homogeneous problems, Journal of Discrete and Continuous Dynamical Systems 8, No. 1 (2002), 267-281.
  • [Ch] K. C. Chang: Infinite dimensional Morse theory and multiple solution problems, Progress in nonlinear diff. equations, Birkhäuser, Boston (1993). MR 94e:58023
  • [Co1] C. V. Coffman: Ljusternik-Schnirelman theory: Complementary principles and the Morse index. Nonlinear Analysis, Theory & Applications. Vol 12, No. 5 (1988), 507-529. MR 89g:58037
  • [Co2] C. V. Coffman: A nonlinear boundary value problem with many positive solutions, Journal of Diff. Equations, 54 (3) (1984), 429-437. MR 86e:35055
  • [Con] C. Conley: Isolated invariant sets and the Morse index, CBMS 38, AMS, Providence (1978). MR 80c:58009
  • [C-D-M] J.N. Corvellec, M. Degiovanni, M. Marzocchi: Deformation properties for continuous functionals and critical point theory, Top. Meth. Nonl. Anal. 1 (1993) 151-171. MR 94c:58026
  • [C-E-L] V. Coti Zelati, I. Ekeland, P.L. Lions: Index estimates and critical points of functionals not satisfying Palais-Smale, Annali della Scuola Normale Superiore di Pisa, Scienze Fisiche e Matematiche, Serie IV, Vol XVII, Fasc.4 (1990), 569-582. MR 92a:58027
  • [C-R1] V. Coti Zelati, P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991), 693-727. MR 93e:58023
  • [C-R2] V. Coti Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $R^n$, Comm. Pure Appl. Math. 45 (1992), 1217-1269. MR 93k:35087
  • [D-J-L-W] W. Ding, Y. Yost, J. Li, X. Wang, Existence results for mean field equations, AIHP, 16, 5 (1999), 653-666. MR 2000i:35061
  • [D-F] H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), 161-183. MR 89m:58207
  • [Eg] H. Egnell: Positive Solutions of Semilinear Equations in Cones, Trans. AMS 330, 1 (1992), 191-201. MR 92f:35018
  • [E0] I. Ekeland: Une theorie de Morse pour les systèmes Hamiltoniens convexes, Annales de l'IHP, Analyse non linéaire, 1 (1984), 19-78. MR 85f:58023
  • [E1] I. Ekeland: Nonconvex minimization problems, Bull. AMS 1 (1979), 443-474.
  • [E2] I. Ekeland: Convexity Methods in Hamiltonian Mechanics. Springer-Verlag, Berlin, Heidelberg, New-York (1990). MR 91f:58027
  • [E-H1] I. Ekeland, H. Hofer: Periodic solutions with prescribed period for convex autonomous Hamiltonian systems. Inv. Math. 81 (1985), 155-188. MR 87b:58028
  • [E-H2] I. Ekeland, H. Hofer: Convex Hamiltonian energy surfaces and their periodic trajectories. Commun. Math. Phys. 113 (1987), 419-469. MR 89c:58035
  • [E-H3] I. Ekeland, H. Hofer: Symplectic topology and Hamiltonian dynamics I and II, Math. Zeitschrift 200 (1989), 355-378 and 203 (1990), 553-567. MR 90a:58046, MR 91e:58053
  • [E-L] I. Ekeland, J.M. Lasry: On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface. Ann. of Math. 112 (1980), 283-319. MR 81m:58032
  • [E-S] M. Esteban, E. Séré: Solutions of the Dirac-Fock Equations for Atoms and Molecules, Commun. Math. Phys. 203 (1999), 499-530. MR 2000j:81057
  • [F-H-R] E. Fadell, S. Husseini, P.H. Rabinowitz: Borsuk-Ulam theorems for arbitrary $S^1$-actions and applications. T.A.M.S. 274 (1982), 345-360. MR 84b:55001
  • [F] G. Fang: On the existence and the classification of critical points for non-smooth functionals, Canadian Journal of Mathematics, Vol. 47 (1995), 684-717. MR 96j:58029
  • [F-G] G. Fang, N. Ghoussoub: Morse-type information on Palais-Smale sequences obtained by Min-Max principles. Comm. Pure & Applied Math., XLVII, (1994), 1595-1653. MR 95m:58028
  • [Fl] A. Floer: Witten's complex and infinite dimensional Morse theory, J. Diff. Geom. 30 (1989), 207-221. MR 90d:58029
  • [G1] N. Ghoussoub: Location, multiplicity and Morse Indices of min-max critical points, J. Reine. und. angew. Math. 417 (1991), 27-76. MR 92e:58040
  • [G2] N. Ghoussoub: Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, Cambridge University Press (1993). MR 95a:58021
  • [G3] N. Ghoussoub: Morse theory up to epsilon, Preprint (2000).
  • [G-K] N. Ghoussoub, X. Kang: Semilinear equations with Hardy-Sobolev singularities on the boundary, Preprint (2001).
  • [G-P] N. Ghoussoub, D. Preiss: A general mountain pass principle for locating and classifying critical points. A.I.H.P-Analyse non linéaire, 6, No. 5 (1989), 321-330. MR 91a:58043
  • [G-Y] N. Ghoussoub, C. Yuan: Multiple Solutions for Quasi-linear PDEs Involving the Critical Sobolev and Hardy Exponents, Trans. A.M.S, 352, 12 (2000) 5703-5743. MR 2001b:35109
  • [G-N-N] B. Gidas, W.-M. Ni, L. Nirenberg: Symmetry of positive solutions of nonlinear elliptic equations in $R^n$, Advances in Math. Supplementary Studies, 7A, Academic, New York (1981) 369-402. MR 84a:35083
  • [G-G] C. Gui, N. Ghoussoub: Multi-peak solutions for a semilinear Neumann problem with critical exponent, Math. Z. 229 (1998), 443-474. MR 2000k:35097
  • [Gu1] C. Gui: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Diff. Eq., 21 (1996), 787-820. MR 98a:35122
  • [Gu2] C. Gui: Multi-peak solutions for a semilinear Neumann problem, Duke Math. J. 84 (1996), 739-769. MR 97i:35052
  • [H-S] R. Hardt and L. Simon: Nodal sets for solutions of elliptic equations, J. Differential Geom. 30 (1989), 505-522. MR 90m:58031
  • [H] H. Hofer: A geometric description of the neighborhood of a critical point given by the mountain pass theorem, J. London Math. Soc., 31 (1985), 566-570. MR 87e:58041
  • [HTWZ] H. Hofer, C. Taubes, A. Weinstein, E. Zehnder: Floer memorial volume, Birkhaüser, 1994. MR 96f:58001
  • [J] L. Jeanjean: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $\textbf{R}^N$, Proc. Roy. Soc. Edinburgh, 129A (1999), 787-809. MR 2001c:35034
  • [J-K] D. Jerison, C. Kenig: Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. Math. 121 (1985), 463-494. MR 87a:35058
  • [L-S] A. Lazer, S. Solimini: Nontrivial solutions of operator equations and Morse indices of critical points of Min-Max type. Non Linear Analysis, Methods & Applications,12, No. 8 (1988) 761-775. MR 89i:58018
  • [Lieb] E. H. Lieb: Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities, Ann. of Math. 118 (1983), 349-374. MR 86i:42010
  • [L1] P. L. Lions: The concentration-compactness principle in the calculus of variations. The locally compact case. Part I and II., Ann. Inst. H. Poincaré, Anal. non-lin., 1 (1984), 109-145 and 223-283. MR 87e:49035a, MR 87e:49035b
  • [L2] P. L. Lions: Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Physics, 109 (1987), 33-97. MR 88e:35170
  • [L-L-Z] C-G. Liu, Y. Long, C. Zhu: Multiplicity of closed characteristics on symmetric convex hypersurfaces in ${{\mathbf R}}^{2n}$, Nankai Inst. Math., Preprint (1999).
  • [L-Sc] L. Ljusternik, L. Schnirelmann: Méthodes topologiques dans les problèmes variationels. Hermann, Paris (1934).
  • [Lo1] Y. Long: Bott formula of the Maslow-type index theory, Pacific J. of Math., 187 (1999), 113-143 MR 2000d:37073
  • [Lo2] Y. Long: Precise iteration formulae of the Maslow-type index theory and ellipticity of closed characteristics, Advances in Math., 154 (2000), 76-131. MR 2001j:37111
  • [L-Z] Y. Long, C. Zhu: Closed characteristics on compact convex hypersurfaces in ${{\mathbf R}}^{2n}$, Nankai Inst. Math., Preprint (1999).
  • [M-W] J. Mawhin, M. Willem: Critical point theory and Hamiltonian systems. Applied Mathematical Sciences, 74, Springer Verlag (1989). MR 90e:58016
  • [N-T2] W. -M. Ni, I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281. MR 94h:35072
  • [N] L. Nirenberg: Variational Methods in non-linear problems. Lecture notes in Math, 1365, Springer-Verlag (1989), 100-119. MR 90c:58034
  • [P] S. Pohozaev: Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet Math. Dokl., 6, (1965), 1408-1411. MR 33:411
  • [P-S] P. Pucci, J. Serrin: The structure of the critical set in the mountain pass theorem. T.A.M.S. 299, No. 1 (1987), 115-132. MR 88b:58025
  • [R1] P. H. Rabinowitz: Minimax methods in critical point theory with applications to differential equations. C.B.M.S., A.M.S., No. 65 (1986). MR 87j:58024
  • [R2] P. Rabinowitz, Multibump solutions of differential equations: an overview, Chinese Journal of Mathematics, 24, 1 (1996), 1-36. MR 97h:58084
  • [R3] P. Rabinowitz: Periodic solutions of a Hamiltonian system on a prescribed energy surface. J. Diff. Eq. 33 (1979), 336-352. MR 81a:58030a
  • [R4] P. Rabinowitz: Periodic solutions of Hamiltonian systems. Comm. Pure App. Math. 31 (1978), 157-184. MR 57:7674
  • [S-U] J. Sacks, K. Uhlenbeck: On the existence of minimal immersions of $2$-spheres. Ann. of Math. 113 (1981), 1-24. MR 82f:58035
  • [Se] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209 (1992), 27-42. MR 92k:58201
  • [So] S. Solimini: Morse index estimates in Min-Max theorems. Manuscripta Mathematica, 63 (1989), 421-433. MR 90f:58028
  • [St] M. Struwe: Variational methods and their applications to non-linear partial differential equations and Hamiltonian systems. Springer-Verlag (1990). MR 92b:49002
  • [St1] M. Struwe: The existence of surfaces of constant mean curvature with free boundaries, Acta Math. 160 (1988), 19-64. MR 89a:53012
  • [St-Ta] M. Struwe, G. Tarantello: On multivortex solutions in Chern-Simons gauge theory, Bollettino U.M.I. 1 (1998), 109-121. MR 99c:58041
  • [Su] T. Suzuki: Positive solutions for semilinear elliptic equations on expanding annuli: mountain pass approach, Funkcial. Ekvac. 39, 1 (1996), 143-164. MR 97e:35065
  • [Tan1] K. Tanaka: Morse indices at critical points related to the symmetric mountain pass theorem and applications, Comm. in part. diff. equations, 14 (1), (1989), 99-128. MR 90i:58019
  • [Tan2] K. Tanaka: Periodic solutions for singular Hamiltonian systems and closed geodesics on non-compact Riemannian manifolds, AIHP, Analyse non-linéaire, 17, 1 (2000) 1-33. MR 2001e:37081
  • [Tar] G. Tarantello: Nodal Solutions of Semi-linear Elliptic Equations with Critical Exponent, Differential and Integral Equations, 5, No 1 (1992), 25-42. MR 92k:35109
  • [Tau1] C. H. Taubes: Path-Connected Yang-Mills Moduli Spaces, J. Differential Geometry, 19 (1984), 337-392. MR 85m:58049
  • [Tau2] C. H. Taubes: Min-Max Theory for the Yang-Mills-Higgs Equations, Commun. Math. Phys. 97 (1985), 473-540. MR 86m:58042
  • [Tau3] C. H. Taubes: A framework for Morse theory for the Yang-Mills functional, Invent. Math. 94 (1988), 327-402. MR 90a:58035
  • [V] C. Viterbo: Indice de Morse des points critiques obtenus par minimax, A.I.H.P. Analyse non linéaire, 5, No. 3 (1988), 221-225. MR 89k:58055
  • [Ya] Xue-Fang Yang: Nodal sets and Morse indices of solutions of super-linear elliptic equations, J. Funct. Analysis 160, 1 (1998), 223-253. MR 99j:35058

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 35J60, 47J30, 58E05, 57R17

Retrieve articles in all journals with MSC (2000): 35J60, 47J30, 58E05, 57R17


Additional Information

Ivar Ekeland
Affiliation: CEREMADE, Université Paris-Dauphine, Paris, France
Email: Ivar.Ekeland@dauphine.fr

Nassif Ghoussoub
Affiliation: Pacific Institute for the Mathematical Sciences, University of British Columbia, Vancouver, B.C., Canada V6T 1Z2
Email: nassif@math.ubc.ca

DOI: https://doi.org/10.1090/S0273-0979-02-00929-1
Received by editor(s): January 1, 2001
Received by editor(s) in revised form: June 13, 2001
Published electronically: January 4, 2002
Additional Notes: The second author was partially supported by a grant from the Natural Science and Engineering Research Council of Canada (NSERC)
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society