Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The interplay between analysis and topology in some nonlinear PDE problems


Author: Haim Brezis
Journal: Bull. Amer. Math. Soc. 40 (2003), 179-201
MSC (2000): Primary 35A15, 35A20, 35J50, 35J65, 35Qxx, 46Txx, 47Hxx, 47Jxx, 55Pxx, 58E15
DOI: https://doi.org/10.1090/S0273-0979-03-00976-5
Published electronically: February 12, 2003
MathSciNet review: 1962295
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. G. Alberti, S. Baldo and G. Orlandi, Functions with prescribed singularities (to appear).
  • 2. F. Almgren and E. Lieb, Singularities of energy minimizing maps from the ball to the sphere: Examples, counterexamples, and bounds, Ann.of Math. 128 (1988), 483-530. MR 91a:58049
  • 3. Th. Aubin, Equations différentielles nonlinéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures et Appl. 55 (1976), 269-296. MR 55:4288
  • 4. F. Bethuel, The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991), 153-206. MR 92f:58023
  • 5. -, A characterization of maps in $H^{1}(B^{3}, S^{2})$ which can be approximated by smooth maps, Ann. Inst. H. Poincaré, Anal. Non Linéaire 7 (1990), 269-286. MR 91f:58013
  • 6. -, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), 417-443. MR 94a:58047
  • 7. F. Bethuel, H. Brezis and J.-M. Coron, Relaxed energies for harmonic maps, in ``Variational Methods'' (H. Berestycki, J.-M. Coron and I. Ekeland, eds.), Birkhäuser, 1990. MR 94a:58046
  • 8. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, 1994. MR 95c:58044
  • 9. F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60-75. MR 89i:58015
  • 10. J. Bourgain, H. Brezis and P. Mironescu, Lifting in Sobolev spaces, J. Analyse Math. 80 (2000), p. 37-86. MR 2001h:46044
  • 11. -, Another look at Sobolev spaces, Optimal Control and Partial Differential Equations (J. L. Menaldi, E. Rofman and A. Sulem, eds.), a volume in honor of A. Bensoussan's 60th birthday, IOS Press, 2001, pp. 439-455.
  • 12. -, $H^{1/2}$ maps with values into the circle: Minimal connections, lifting and the Ginzburg-Landau equation (to appear). Part of the results were announced in a note by the same authors: On the structure of the Sobolev space $H^{1/2}$ with values into the circle, C. R. Acad. Sci. Paris Ser. I Math. 331 (2000), 119-124. MR 2001m:46068
  • 13. H. Brezis, $S^{k}$-valued maps with singularities, Topics in the Calculus of Variations (M. Giaquinta, ed.), Lecture Notes in Math., vol. 1365, Springer, 1989, 1-30. MR 90f:58029
  • 14. -, How to recognize constant functions. Connections with Sobolev spaces, Russian Math. Surveys, volume in honor of M. Vishik (to appear).
  • 15. H. Brezis and F. Browder, Partial differential equations in the 20th century, Advances in Math. 135 (1998), 76-144, and Enciclopedia Italiana (to appear). MR 99i:35001
  • 16. H. Brezis and J.-M. Coron, Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92 (1983), 203-215. MR 85a:58022
  • 17. -, Multiple solutions of $H$-systems and Rellich's conjecture, Comm. Pure Appl. Math. 37 (1984), 149-187. MR 85i:53010
  • 18. H. Brezis, J.-M. Coron and E. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986), 649-705. MR 88e:58023
  • 19. H. Brezis and Y. Li, Topology and Sobolev spaces, J. Funct. Anal. 183 (2001), 321-369. MR 2002h:58009
  • 20. H. Brezis, Y. Li, P. Mironescu and L. Nirenberg, Degree and Sobolev spaces, Topological Methods in Nonlinear Analysis 13 (1999), 181-190. MR 2001a:47065
  • 21. H. Brezis and L. Nirenberg, Degree theory and BMO, Part I : compact manifolds without boundaries, Selecta Math. 1 (1995), 197-263. MR 96g:58023
  • 22. J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. MR 82b:58033
  • 23. -, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. MR 89i:58027
  • 24. J. Ericksen, Equilibrium of liquid crystals, in ``Advances in Liquid Crystals 2'' (G. Brown, ed.), Acad. Press, 1976, 233-299.
  • 25. J. Ericksen and D. Kinderlehrer (editors), Theory and applications of liquid crystals, IMA Series, Vol. 5, Springer, 1987. MR 88d:82007
  • 26. L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), 101-113. MR 93m:58026
  • 27. H. Federer, Geometric measure theory, Springer, 1969. MR 41:1976
  • 28. M. Giaquinta, Multiple integrals in the calculus of variations and non-linear elliptic systems, Princeton Univ. Press, 1983. MR 86b:49003
  • 29. M. Giaquinta and S. Hildebrandt, A priori estimates for harmonic mappings, J. Reine Angew. Math. 336 (1982), 124-164. MR 84b:58035
  • 30. M. Giaquinta, G. Modica and J. Soucek, Cartesian Currents in the Calculus of Variations, Springer, 1998. MR 2000b:49001a, MR 2000b:49001b
  • 31. E. Giusti (editor), Harmonic mappings and minimal immersions, Lecture Notes in Math. Vol. 1161, Springer, 1985; includes lectures by S. Hildebrandt, J. Jost and L. Simon. MR 86j:58037
  • 32. R. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Math. 471, Springer, 1975. MR 58:2872
  • 33. F. B. Hang and F. H. Lin, Topology of Sobolev mappings (to appear).
  • 34. R. Hardt, D. Kinderlehrer and F. H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys. 105 (1986), 547-570. MR 88a:35207
  • 35. R. Hardt and F. H. Lin, A remark on $H^{1}$ mappings, Manuscripta Math. 56 (1986), 1-10. MR 87k:58068
  • 36. -, Singularities of $p$-energy minimizing unit vector-fields on planar domains, Calc. of Variations and PDE 3 (1995), 311-342. MR 97d:58060
  • 37. F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris 312 (1991), 591-596. MR 92e:58055
  • 38. -, Harmonic maps, conservation laws and moving frames, 2nd ed., Cambridge Univ. Press, 2002.
  • 39. D. Hilbert, Uber das Dirichletsche Prinzip, Jahresbericht Deut. Math.-Ver. VIII, 1900, 184-188 (also in J. Reine Angew. Math. 129 (1905), 63-67) and Math. Ann 59 (1904), 161-184.
  • 40. S. Hildebrandt, Nonlinear elliptic systems and harmonic mappings, Proc. 1980 Beijing Symp. Diff. Geom. Diff. Eq., Science Press, Beijing, 1982, 481-615. MR 85k:35078
  • 41. R. L. Jerrard and H. M. Soner, Functions of bounded higher variation (to appear).
  • 42. J. Jost, Harmonic mappings between surfaces, Lecture Notes in Math., vol. 1062, Springer, 1984.
  • 43. -, The Dirichlet problem for harmonic maps from a surface with boundary onto a $2$-sphere with non-constant boundary values, J. Diff. Geom. 19 (1984), 393-401. MR 86b:58031
  • 44. S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221-1268. MR 94h:35137
  • 45. -, Smoothing estimates for null forms and applications, Duke Math. J. 81 (1995), 99-133. MR 97h:35022
  • 46. M. Kléman, Points, lines and walls, John-Wiley, 1983. MR 85e:82058
  • 47. F. H. Lin and T. Rivière, Complex Ginzburg-Landau equations in high dimensions and codimension-two area-minimizing currents, J. Eur. Math. Soc. 1 (1999), 237-311; Erratum 2 (2000), 87-91. MR 2000g:49048, MR 2001a:49041
  • 48. C. Morrey, Multiple Integrals in the Calculus of Variations, Springer, 1966. MR 34:2380
  • 49. H. Poincaré, Sur les équations aux dérivées partielles de la physique mathématique, Amer. J. Math. 12 (1980), 211-294.
  • 50. -, Théorie du potential newtonien, Carré et Naud, 1899; reprinted J. Gabay, 1990.
  • 51. T. Rivière, Everywhere discontinuous harmonic maps into spheres, Acta Math. 175 (1995), 197-226. MR 96k:58059
  • 52. -, Line vortices in the $U(1)$ - Higgs model, Control, Opt. and Calc. of Variations 1 (1996), 77-167. MR 97g:58043
  • 53. J. Rubinstein and P. Sternberg, Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents, Comm. Math. Phys. 179 (1996), 257-263. MR 97f:35208
  • 54. J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. 113 (1981), 1-24. MR 82f:58035
  • 55. R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom. 17 (1982), 307-335. MR 84b:58037a; correction in J. Diff. Geom. 18 (1983), 329. MR 84b:58037b
  • 56. -, Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom. 18 (1983), 253-268. MR 85b:58037
  • 57. -, Regularity of minimizing harmonic maps into the sphere, Invent. Math. 78 (1984), 89-100. MR 86a:58024
  • 58. R. Schoen and S. T. Yau, Lectures on Harmonic Maps, International Press, 1997. MR 98i:58072
  • 59. H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Annal. 26 (1969), 318-344. MR 39:4788
  • 60. H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J. 7 (1940), 411-440.
  • 61. B. White, Homotopy classes in Sobolev spaces and the existence of energy minimizing maps, Acta Math. 160 (1988), 1-17. MR 89a:58031

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 35A15, 35A20, 35J50, 35J65, 35Qxx, 46Txx, 47Hxx, 47Jxx, 55Pxx, 58E15

Retrieve articles in all journals with MSC (2000): 35A15, 35A20, 35J50, 35J65, 35Qxx, 46Txx, 47Hxx, 47Jxx, 55Pxx, 58E15


Additional Information

Haim Brezis
Affiliation: Department of Mathematics, Rutgers University, Piscataway, NJ 08854; Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte courrier 187, 4 place Jussieu, 75252 Paris cedex 05, France
Email: brezis@math.rutgers.edu, brezis@ann.jussieu.fr, brezis@ccr.jussieu.fr

DOI: https://doi.org/10.1090/S0273-0979-03-00976-5
Received by editor(s): October 23, 2002
Published electronically: February 12, 2003
Additional Notes: This text is an expanded version of the invited address at the AMS Meeting “Mathematical Challenges of the 21st Century”, UCLA (2000)
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society