Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



Evolutionary game dynamics

Authors: Josef Hofbauer and Karl Sigmund
Journal: Bull. Amer. Math. Soc. 40 (2003), 479-519
MSC (2000): Primary 91A22; Secondary 91-02, 92-02, 34D20
Published electronically: July 10, 2003
MathSciNet review: 1997349
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Evolutionary game dynamics is the application of population dynamical methods to game theory. It has been introduced by evolutionary biologists, anticipated in part by classical game theorists. In this survey, we present an overview of the many brands of deterministic dynamical systems motivated by evolutionary game theory, including ordinary differential equations (and, in particular, the replicator equation), differential inclusions (the best response dynamics), difference equations (as, for instance, fictitious play) and reaction-diffusion systems. A recurrent theme (the so-called `folk theorem of evolutionary game theory') is the close connection of the dynamical approach with the Nash equilibrium, but we show that a static, equilibrium-based viewpoint is, on principle, unable to always account for the long-term behaviour of players adjusting their behaviour to maximise their payoff.

References [Enhancements On Off] (What's this?)

  • [Ak79] E. Akin: The geometry of population genetics. Lecture Notes in Biomathematics 31. Springer, Berlin-Heidelberg-New York (1979) MR 80m:92007
  • [Ak93] E. Akin: The general topology of dynamical systems. Amer. Math. Soc., Providence (1993). MR 94f:58041
  • [AL84] E. Akin and V. Losert (1984): Evolutionary dynamics of zero-sum games, J. Math. Biology 20 (1984), 231-258. MR 86g:92024a
  • [AF00] C. Alós-Ferrer, Finite population dynamics and mixed equilibria, WP 0008, Department of Economics, University of Vienna, 2000. International Game Theory Review, forthcoming.
  • [AF01] C. Alós-Ferrer and A. Ania: Local Equilibria in Economic Games, Econ. Letters 70 (2001),165-173. MR 2001j:91091
  • [AF02] C. Alós-Ferrer, A.B. Ania, The evolutionary logic of feeling small, WP 0216, Department of Economics, University of Vienna, 2002.
  • [AFS00] C. Alós-Ferrer, A.B. Ania and K.R. Schenk-Hoppé: An evolutionary model of Bertrand oligopoly. Games Econ. Behav. 33 (2000), 1-19. MR 2001i:91051
  • [ATW02] A.B. Ania, T. Tröger and A. Wambach: An evolutionary analysis of insurance markets with adverse selection, Games Econ. Behav. 40 (2002), 153-184.
  • [AuC84] J.P. Aubin, A. Cellina: Differential inclusions, Springer, Berlin (1984). MR 85j:49010
  • [A84] R. Axelrod: The Evolution of Cooperation. New York: Basic Books (1984).
  • [BaS00] D. Balkenborg, K. Schlag: Evolutionarily stable sets, Int. J. Game Theory 29 (2000), 571-95. MR 2002c:91019
  • [Beg02] A. Beggs: On the convergence of reinforcement learning, Preprint.
  • [Ben99] M. Benaim: Dynamics of stochastic approximation algorithms. In: J. Azema et al.(eds.), Seminaire de probabilites XXXIII. Berlin: Springer. Lect. Notes Math. 1709, 1-68 (1999). MR 2001d:62081
  • [BenH99] M. Benaim and M.W. Hirsch: Mixed equilibria and dynamical systems arising from repeated games, Games Econ. Behav. 29 (1999), 36-72 MR 2000m:91020
  • [BenW00] M. Benaim and J. Weibull: Deterministic approximation of stochastic evolution in games, Preprint 2000, Econometrica. (To appear)
  • [Ber98] U. Berger: Best response dynamics and Nash dynamics for games, Dissertation, Univ. Vienna (1998).
  • [Ber01] U. Berger: Best response dynamics for role games, Int. J. Game Theory 30 (2001), 527-538. MR 2003c:91008
  • [Ber02] U. Berger: A general model of best response adaptation. Preprint. 2002.
  • [Ber03] U. Berger: Fictitious play in $2 \times n$ games. Preprint. 2003.
  • [BerH02] U. Berger and J. Hofbauer: Irrational behavior in the Brown-von Neumann-Nash dynamics, Preprint 2002.
  • [Bl93] L.E. Blume: The statistical mechanics of strategic interaction, Games Econ. Behav. 5 (1993), 387-424. MR 94j:90063
  • [Bo83] I.M. Bomze: Lotka-Volterra equations and replicator dynamics: A two dimensional classification, Biol. Cybernetics 48 (1983), 201-211.
  • [Bo86] I.M. Bomze: Non-cooperative two-person games in biology: a classification Int. J. Game Theory 15 (1986), 31-57. MR 87g:90141
  • [Bo90] I.M. Bomze: Dynamical aspects of evolutionary stability, Monatshefte für Mathematik 110 (1990), 189-206 MR 92f:92023
  • [Bo91] I.M. Bomze: Cross entropy minimization in uninvadable states of complex populations, J. Math. Biol. 30 (1991), 73-87. MR 92j:92012
  • [Bo94] I.M. Bomze: Lotka-Volterra equation and replicator dynamics: new issues in classification, Biol. Cybernetics 72 (1994), 447-453.
  • [Bo98] I.M. Bomze: Uniform barriers and evolutionarily stable sets. In: W. Leinfellner, E. Köhler (eds.), Game Theory, Experience, Rationality, pp. 225-244. Kluwer, Dordrecht (1998), 225-244. MR 2001h:91020
  • [Bo02] I.M. Bomze: Regularity vs. degeneracy in dynamics, games, and optimization: a unified approach to different aspects, SIAM Review 44 (2002), 394-414.
  • [BoP89] I.M. Bomze, B.M. Pötscher: Game Theoretical Foundations of Evolutionary Stability, Lecture Notes in Economics and Math. Systems 324, Berlin: Springer (1989). MR 92i:92010
  • [BoB95] I.M. Bomze, R. Bürger: Stability by mutation in evolutionary games, Games and Economic Behaviour 11 (1995), 146-172. MR 97e:90122
  • [Bö00] T. Börgers: When Does Learning Lead to Nash Equilibrium?, in K. Inderfurth et al. (editors), Operations Research Proceedings 1999, Springer, Berlin (2000), 176-202.
  • [BöS97] T. Börgers, R. Sarin: Learning through reinforcement and replicator dynamics, J. Econ. Theory 77 (1997), 1-14. MR 98j:93087
  • [BH87] D.B. Brown and R.I.C. Hansel: Convergence to an evolutionarily stable strategy in the two-policy game, Amer. Naturalist 130 (1987), 929-940.
  • [Br49] G.W. Brown: Some notes on computation of games solutions, RAND report P-78 (1949).
  • [Br51] G.W. Brown: Iterative solution of games by fictitious play, in Activity Analysis of Production and Allocation, ed. T.C. Koopmans, New York, Wiley (1951), 374-376. MR 15:48e
  • [BrN50] G.W. Brown, J. von Neumann: Solutions of games by differential equations, Ann. Math. Studies 24 (1950), 73-79. MR 12:514a
  • [CaS92] A. Cabrales, J. Sobel: On the limit points of discrete selection dynamics, J. Econ. Theory 57 (1992), 407-419. MR 93g:90018
  • [Co92] S. Cowan: Dynamical systems arising from game theory, Dissertation (1992), Univ. California, Berkeley.
  • [Cr90] R. Cressman: Strong stability and density-dependent evolutionarily stable strategies. J. Theor. Biology 145 (1990), 319-30. MR 91j:92010
  • [Cr92] R. Cressman: The stability concept of evolutionary game theory, Springer, Berlin (1992). MR 93j:92020
  • [Cr95] R. Cressman: Evolutionary game theory with two groups of individuals. Games Econ. Behav. 11 (1995), 237-253. MR 96m:92003
  • [Cr97] R. Cressman: Local stability for smooth selection dynamics for normal form games, Math. Social Sciences 34 (1997), 1-19. MR 98k:90167
  • [Cr03] R. Cressman: Evolutionary dynamics and extensive form games, Cambridge, Mass., MIT Press (2003).
  • [CrGH01] R. Cressman, J. Garay, J. Hofbauer: Evolutionary stability concepts for $N$-species frequency-dependent interactions, J. Theor. Biol. 211 (2001), 1-10.
  • [CrGW00] R. Cressman, A. Gaunersdorfer, J.F. Wen: Evolutionary and dynamic stability in symmetric evolutionary games with two independent decisions, Int. Game Theory Review 2 (2000), 67-81. MR 2001j:91019
  • [CrHH96] R. Cressman, J. Hofbauer, W.G.S. Hines: Evolutionary stability in strategic models of single-locus frequency-dependent viability selection. J. Math. Biol. 34 (1996), 707-733. MR 97j:92005
  • [CrVi97] R. Cressman, G. T. Vickers: Spatial and density effects in evolutionary game theory, J. Theor. Biol. 184 (1997), 359-369.
  • [DeS92] E. Dekel, S. Scotchmer: On the evolution of optimizing behavior, J. Econ. Theory 57 (1992), 392-346. MR 93f:90211
  • [DiLa96] U. Dieckmann, R. Law: The dynamical theory of coevolution, J. Math. Biol. 34 (1996), 579-612. MR 97m:92007
  • [DR98] L.A. Dugatkin and H.K. Reeve (eds.): Game Theory and Animal Behaviour, Oxford UP (1998)
  • [Du99] R. Durrett: Stochastic spatial models, SIAM Review 41 (1999) 677-718. MR 2000h:60086
  • [El93] G. Ellison: Learning, local interaction, and coordination, Econometrica 61 (1993), 1047-1071. MR 94g:90183
  • [ErR98] I. Erev and A. Roth: Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibrium, Amer. Econ. Review 88 (1998), 79-96.
  • [Es82] I. Eshel: Evolutionarily stable strategies and viability selection in Mendelian populations, Theor. Pop. Biol. 22 (1982), 204-217. MR 84f:92028
  • [Es83] I. Eshel: Evolutionary and continuous stability, J. Theor. Biol. 103 (1983), 99-111. MR 85a:92024
  • [Es96] I. Eshel: On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution, J. Math. Biol. 34 (1996), 485-510.
  • [EsAk83] I. Eshel, E. Akin: Coevolutionary instability of mixed Nash solutions, J. Math. Biology 18 (1983), 123-133. MR 85d:92023
  • [EsMS97] I. Eshel, U. Motro and E. Sansone, Continuous stability and evolutionary convergence, J. Theor. Biology 185 (1997), 333-343.
  • [EsSS98] I. Eshel, L. Samuelson and A. Shaked: Altruists, egoists and hooligans in a local interaction model, Amer. Econ. Review 88 (1998), 157-179.
  • [FaW89] J. Farrell and R. Ware: Evolutionary stability in the repeated prisoner's dilemma, Theor. Popul. Biol. 36 (1989), 161-166.
  • [FG00] E. Fehr and S. Gächter: Cooperation and punishment in public goods experiments, Amer. Econ. Review 90 (2000), 980-994.
  • [Fi79] P. Fife: Mathematical aspects of reacting and diffusing systems, Springer Lecture Notes in Biomathematics 28 (1979). MR 80g:35001
  • [Fi30] R.A. Fisher: The genetical theory of natural selection, Oxford: Clarendon Press (1930). MR 2002c:92013
  • [FoYo90] D. Foster and H. P. Young: Stochastic evolutionary game dynamics, Theor. Pop. Biol. 38 (1990), 219-232. MR 91h:92017
  • [FoY98] D. Foster and H. P. Young: On the nonconvergence of fictitious play in coordination games, Games Econ. Behav. 25 (1998), 79-96. MR 99k:90217
  • [FrW84] M.I. Freidlin and A.D. Wentzel: Random perturbations of dynamical systems. New York: Springer (1984). MR 85a:60064
  • [Fr91] D. Friedman: Evolutionary games in economics, Econometrica 59 (1991), 637-66. MR 92b:90052
  • [FL98] D. Fudenberg and D. K. Levine: The theory of learning in games. MIT Press (1998). MR 99i:90121
  • [FT91] D. Fudenberg and J. Tirole: Game Theory. MIT Press (1991). MR 92m:90001
  • [GBS95] J. Gale, K. Binmore and L. Samuelson: Learning to be imperfect: the Ultimatum game, Games Econ. Behaviour 8 (1995), 56-90. MR 95k:90125
  • [GH03] B. Garay and J. Hofbauer, Robust permanence for ecological differential equations, minimax and discretizations. SIAM J. Math. Anal. 34 (2003), 1007-1093.
  • [Gau92] A. Gaunersdorfer: Time averages for heteroclinic attractors, SIAM J. Appl. Math 52 (1992), 1476-89. MR 93j:34068
  • [GaHS91] A. Gaunersdorfer, J. Hofbauer, K. Sigmund: On the dynamics of asymmetric games, Theor. Pop. Biol. 39 (1991), 345-357. MR 92d:90136
  • [GaH95] A. Gaunersdorfer, J. Hofbauer: Fictitious play, Shapley polygons and the replicator equation, Games Econ. Behav. 11 (1995), 279-303. MR 96j:90096
  • [Ge02] S.A.H. Geritz, M. Gyllenberg, F.J.A. Jacobs, K. Parvinen: Invasion dynamics and attractor inheritance, J. Math. Biol. 44 (2002), 548-560. MR 2003d:92021
  • [GiM91] I. Gilboa, A. Matsui: Social stability and equilibrium, Econometrica 59 (1991), 859-867.
  • [Gi00] H. Gintis: Game theory evolving, Princeton UP (2000).
  • [Go95] Godfray, H.C.J. (1995) Evolutionary theory of parent- offspring conflict, Nature 376, 133-138
  • [H67] W.D. Hamilton: Extraordinary sex ratios, Science 156 (1967), 477-488.
  • [Ha96] P. Hammerstein: Darwinian adaptation, population genetics and the streetcar theory of evolution, J. Math. Biol. 34 (1996), 511-532.
  • [HaS94] P. Hammerstein, R. Selten: Game theory and evolutionary biology, in R.J. Aumann, S. Hart (eds.): Handbook of Game Theory II, Amsterdam: North-Holland (1994), 931-993.
  • [Har73] J.C. Harsanyi: Oddness of the number of equilibrium points: a new proof, Int. J. Game Theory 2 (1973), 235-250. MR 58:26059
  • [HaSe88] J.C. Harsanyi, R. Selten: A General Theory of Equilibrium Selection in Games, MIT Press (1988). MR 89j:90285
  • [Har98] C. Harris: On the rate of convergence of continuous- time fictitious play, Games Econ. Behav. 22 (1998), 238-259. MR 99d:90147
  • [HaM01] S. Hart, A. Mas-Colell: A general class of adaptive strategies, J. Econ. Theory 98 (2001), 26-54. MR 2003b:91017
  • [HB01] J. Henrich, R. Boyd, S. Bowles, C. Camerer, E. Fehr, H. Gintis and R. McElreath: In search of homo economicus: behavioral experiments in 15 small-scale societies, Amer. Econ. Rev. 91 (2001), 73-78
  • [Hi87] W.G.S. Hines: Evolutionary stable strategies: a review of basic theory. Theor. Pop. Biol. 31 (1987), 195-272. MR 88f:92033
  • [Hi94] W.G.S. Hines: ESS modelling of diploid populations I and II. J. Appl. Prob. 26 (1994), 341-376. MR 95g:92009a
  • [Hi88] M. W. Hirsch: Systems of differential equations which are competitive or cooperative: III. Competing species, Nonlinearity 1 (1988), 51-71. MR 90d:58070
  • [Ho81] J. Hofbauer: On the occurrence of limit cycles in the Volterra-Lotka equation, Nonlinear Analysis 5 (1981), 1003-1007. MR 83c:92063
  • [Ho84] J. Hofbauer: A difference equation model for the hypercycle, SIAM J. Appl. Math. 44 (1984), 762-772. MR 85m:58153
  • [Ho95a] J. Hofbauer: Stability for the best response dynamics, Preprint.
  • [Ho95b] J. Hofbauer: Imitation dynamics for games, Preprint.
  • [Ho96] J. Hofbauer: Evolutionary dynamics for bimatrix games: a Hamiltonian system?, J. Math. Biol. 34 (1996), 675-688. MR 97h:92011
  • [Ho97] J. Hofbauer: Equilibrium selection via travelling waves. In: Werner Leinfellner and Eckehart Köhler (eds.), Vienna Circle Institute Yearbook 5/1997, Game Theory, Experience, Rationality. Foundations of Social Sciences, Economics and Ethics. Harsanyi. Dordrecht-Boston-London: Kluwer (1998), 245-259. MR 2001f:91018
  • [Ho99] J. Hofbauer: The spatially dominant equilibrium of a game. Annals of Operations Research 89 (1999) 233-251. MR 2000g:91008
  • [Ho00] J. Hofbauer: From Nash and Brown to Maynard Smith: equilibria, dynamics and ESS, Selection 1 (2000), 81-88.
  • [HoH02] J. Hofbauer and E. Hopkins: Learning in perturbed asymmetric games. Preprint. 2002.
  • [HoHV97] J. Hofbauer, V. Hutson and G.T. Vickers, Travelling waves for games in economics and biology, Nonlinear Analysis 30 (1997) 1235-1244.
  • [HoOR03] J. Hofbauer, J. Oechssler and F. Riedel: Continuous and global stability in innovative evolutionary dynamics. Preprint. 2003.
  • [HoSa01] J. Hofbauer, W.H. Sandholm: Evolution and learning in games with randomly perturbed payoffs, Preprint, 2001.
  • [HoSa02] J. Hofbauer, W.H. Sandholm: On the global convergence of stochastic fictitious play, Econometrica 70 (2002), 2265-94.
  • [HoSc00] J. Hofbauer, K. Schlag: Sophisticated imitation in cyclic games, J. Evolutionary Economics 10 (2000), 523-543.
  • [HoSS79] J. Hofbauer, P. Schuster, K. Sigmund: A note on evolutionary stable strategies and game dynamics, J. Theor. Biology 81 (1979), 609-612. MR 81d:92015
  • [HoSS82] J. Hofbauer, P. Schuster, K. Sigmund: Game dynamics in Mendelian populations. Biol. Cybern. 43 (1982), 51-57. MR 83j:92069
  • [HoS88] J. Hofbauer, K. Sigmund: The Theory of Evolution and Dynamical Systems, Cambridge UP (1988). MR 91h:92019
  • [HoS90] J. Hofbauer, K. Sigmund: Adaptive dynamics and evolutionary stability. Appl. Math. Letters 3 (1990), 75-79. MR 91h:92018
  • [HoSi98] J. Hofbauer, K. Sigmund: Evolutionary Games and Population Dynamics, Cambridge UP (1998). MR 99h:92027
  • [HSo94] J. Hofbauer, J. W.-H. So: Multiple limit cycles in three dimensional Lotka-Volterra equations. Appl. Math. Letters 7 (1994), 65-70. MR 96g:34063
  • [HoSo02] J. Hofbauer and S. Sorin: Best response dynamics for continuous zero-sum games. Preprint, 2002.
  • [HoSw96] J. Hofbauer, J. Swinkels: A universal Shapley example. Preprint.
  • [HoW96] J. Hofbauer, J. W. Weibull: Evolutionary selection against dominated strategies, J. Econ. Theory 71 (1996), 558-573. MR 97k:92012
  • [Hop99a] E. Hopkins: Learning, matching, aggregation, Games Econ. Behav. 26 (1999), 79-110. MR 2000c:91004
  • [Hop99b] E. Hopkins: A note on best response dynamics, Games Econ. Behav. 29 (1999), 138-50. MR 2000j:91017
  • [Hop02] E. Hopkins: Two Competing Models of How People Learn in Games, Econometrica 70 (2002), 2141-2166.
  • [HopP02] E. Hopkins and M. Posch: Attainability of boundary points under reinforcement learning, Preprint.
  • [HuVi92] V. Hutson, G.T. Vickers: Travelling waves and dominance of ESS's, J. Math. Biol. 30 (1992), 457-471. MR 93g:90112
  • [JJS99] H.J. Jacobsen, M. Jensen and B. Sloth: On the structural difference between the evolutionary approach of Young and that of KMR. Preprint.
  • [KR95] J.H. Kagel and A.E. Roth: Handbook of Experimental Economics, Princeton UP (1995).
  • [Ka97] M. Kandori: Evolutionary Game Theory in Economics, in D. M. Kreps and K. F. Wallis (eds.), Advances in Economics and Econometrics: Theory and Applications, I, Cambridge UP (1997).
  • [KaMR93] M. Kandori, G.J. Mailath and R. Rob: Learning, mutation, and long run equilibria in games, Econometrica 61 (1993), 29-56. MR 93m:90129
  • [KaR95] M. Kandori and R. Rob: Evolution of equilibria in the long run: a general theory and applications, J. Econ. Theory 65 (1995), 383-414. MR 96b:90130
  • [K02] B. Kerr, M.A. Riley, M.W. Feldman and B.J.M. Bohannan: Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors, Nature 418 (2002), 171-174.
  • [Kos02] M. Kosfeld: Stochastic strategy adjustment in coordination games, Economic Theory 20 (2002), 321-339. MR 2003f:91005
  • [Kr92] V. Krishna: Learning in games with strategic complementarities, Preprint.
  • [KrS98] V. Krishna, T. Sjöström: On the convergence of fictitious play, Math. Oper. Res. 23 (1998), 479-511. MR 99i:90120
  • [LaTW01] J.F. Laslier, R. Topol, B. Walliser: A behavioral learning process in games, Games Econ. Behav. 37 (2001), 340-366. MR 2002k:91040
  • [Le94] R.J. Leonard: Reading Cournot, reading Nash: The creation and stabilisation of the Nash equilibrium, The Economic Journal 104 (1994), 492-511.
  • [Le84] S. Lessard: Evolutionary dynamics in frequency dependent two-phenotypes models, Theor. Pop. Biol. 25 (1984), 210-234.
  • [Le90] S. Lessard: Evolutionary stability: one concept, several meanings. Theor. Pop. Biol. 37 (1990), 159-70. MR 90m:92042
  • [LoA83] V. Losert and E. Akin: Dynamics of games and genes: Discrete versus continuous time, J. Math. Biology 17 (1983), 241-251. MR 85a:92019
  • [Lu02] Z. Lu, Y. Luo, Three limit cycles for a three-dimensional Lotka-Volterra competitive system with a heteroclinic cycle, Computer Math. Appl., to appear.
  • [Mai98] G. Mailath: Do people play Nash equilibrium? Lessons from evolutionary game theory, J. Economic Literature 36 (1998), 1347-1374.
  • [Ma92] A. Matsui: Best response dynamics and socially stable strategies, J. Econ. Theory 57 (1992), 343-362. MR 93g:90110
  • [MS74] J. Maynard Smith: The theory of games and the evolution of animal conflicts, J. Theor. Biol. 47 (1974), 209-221. MR56:2475
  • [MS81] J. Maynard Smith: Will a sexual population evolve to an ESS? Amer. Naturalist 177 (1981), 1015-1018.
  • [MS82] J. Maynard Smith: Evolution and the Theory of Games. Cambridge Univ. Press (1982).
  • [MS88] J. Maynard Smith: Can a mixed strategy be stable in a finite population?, J. Theor. Biol. 130 (1988), 247-251. MR 89d:92047
  • [Mayr70] E. Mayr: Populations, species, and evolution. Harvard Univ. Press (1970).
  • [Me01] G. Meszéna, È. Kisdi, U. Dieckmann, S.A.H. Geritz, J.A.J. Metz: Evolutionary optimization models and matrix games in the unified perspective of adaptive dynamics, Selection 2 (2001), 193-210.
  • [Me96] J.A.J. Metz, S.A.H. Geritz, G. Meszéna, F.J.A. Jacobs, J.S. van Heerwarden: Adaptive dynamics: a geometrical study of the consequences of nearly faithful replication, in S.J. Van Strien, S.M. Verduyn Lunel (eds.) Stochastic and spatial structures of dynamical systems, Amsterdam: North Holland (1996), 183-231. MR 2001b:37006
  • [MoPa97] D. W. Mock and G.A. Parker: The evolution of sibling rivalry. Oxford UP (1997).
  • [MoSh96a] D. Monderer, L. Shapley: Potential games, Games Econ. Behav. 14 (1996), 124-143. MR 97g:90183
  • [MoSh96b] D. Monderer, L. Shapley: Fictitious play property for games with identical interests, J. Econ. Theory 68 (1996), 258-265. MR 96m:90144
  • [Mor00] S. Morris, Contagion, Review of Economic Studies 67 (2000), 57-78. MR 2001j:91020
  • [Nac90] J. Nachbar: ``Evolutionary" selection dynamics in games: convergence and limit properties, Int. J. Game Theory 19 (1990), 59-89. MR 91c:90127
  • [Na51] J. Nash: Non-cooperative games, Ann. Math. 54 (1951), 287-295. MR 13:261g
  • [Na96] J. Nash: Essays on Game Theory, Elgar, Cheltenham (1996).
  • [Na01] J. Nash: The essential John Nash, Eds: H.W. Kuhn and S. Nasar, Princeton UP (2002). MR 2002k:01044
  • [NM47] J. von Neumann, O. Morgenstern: Theory of Games and Economic Behaviour, Princeton UP (1947). MR 9:50f
  • [Ni59] H. Nikaido: Stability of equilibrium by the Brown-von Neumann differential equation, Econometrica 27 (1959), 654-671. MR 22:6600
  • [No90] M.A. Nowak: An evolutionarily stable strategy may be inaccessible, J. Theor. Biol. 142 (1990), 237-241. MR 91e:92016
  • [NoBoMay94] M.A. Nowak, S. Bonhoeffer and R.M. May: More spatial games, Int. J. Bif. Chaos 4 (1994), 33-56. MR 95a:90213
  • [NoMay92] M.A. Nowak and R.M. May: Evolutionary games and spatial chaos, Nature 359 (1992), 826-829
  • [NoMay93] M.A. Nowak and R.M. May: The spatial dilemmas of evolution, Int. J. Bifur. Chaos Appl. Sci. Engrg. 3 (1993), 35-78. MR 94c:92014
  • [NoS93] M.A. Nowak and K. Sigmund: Chaos and the evolution of cooperation, Proc. Nat. Acad. Science USA 90 (1993), 5091-94.
  • [NPS00] M.A. Nowak, K.P. Page and K. Sigmund: Fairness versus reason in the ultimatum game, Science 289 (2000), 1773-1775.
  • [NS97] G. Nöldeke and L. Samuelson: A dynamic model of equilibrium selection in signaling markets. J. Econ. Theory 73 (1997), 118-156.
  • [Oe97] J. Oechssler: An evolutionary interpretation of mixed-strategy equilibria, Games Econ. Behav. 21 (1997), 203-237. MR 98m:90194
  • [OR01] J. Oechssler and F. Riedel: Evolutionary dyamics on infinite strategy spaces, Economic Theory 17 (2001), 141-162. MR 2002c:91020
  • [OR02] J. Oechssler and F. Riedel: On the dynamic foundation of evolutionary stability in continuous models, J. Econ. Theory 107 (2002), 223-252.
  • [Pl97] M. Plank: Some qualitative differences between the replicator dynamics of two player and $n$ player games, Nonlinear Analysis 30 (1997), 1411-1417.
  • [Po97] M. Posch: Cycling in a stochastic learning algorithm for normal form games, J. Evol. Economics 7 (1997), 193-207.
  • [RS01] P.W. Rhode and M. Stegemann: Evolution through imitation: The case of duopoly, Int. J. Industrial Organization 19 (2001), 415-454.
  • [RiW95] K. Ritzberger, J. W. Weibull: Evolutionary selection in normal-form games, Econometrica 63 (1995), 1371-1399. MR 96h:90147
  • [Ro51] J. Robinson: An iterative method of solving a game, Ann. Math. (2) 54 (1951), 296-301. MR 13:261e
  • [Ro71] J. Rosenmüller: Über Periodizitätseigenschaften spieltheoretischer Lernprozesse, Z. Wahrscheinlichkeitstheorie Verw. Geb. 17 (1971), 259-308. MR 44:6351
  • [Ru99] A. Rustichini: Optimal properties of stimulus- response learning models. Games Econ. Behav. 29 (1999), 244-273. MR 2000m:91024
  • [Sa97] L. Samuelson: Evolutionary games and equilibrium selection, Cambridge, MIT Press (1997). MR 98e:90003
  • [SaZ92] L. Samuelson, J. Zhang: Evolutionary stability in asymmetric games, J. Econ. Theory 57 (1992), 363-391. MR 93f:90188
  • [Sa98] W.H. Sandholm: Simple and clever decision rules for a model of evolution, Econ. Lett. 61 (1998), 165-170. MR 99i:92011
  • [Sa01] W.H. Sandholm: Potential games with continuous player sets, J. Econ. Theory 97 (2001), 81-108. MR 2002b:91005
  • [Sa02] W.H. Sandholm: Excess payoff dynamics, potential dynamics and stable games. Preprint.
  • [Sat02] Y. Sato, E. Akiyama, J. Doyne Farmer: Chaos in learning a simple two-person game, Proc. Nat. Acad. Sci. 99 (2002), 4748-4751. MR 2003e:91006
  • [S88] M.E. Schaffer: Evolutionarily stable strategies for a finite population and a variable contest size, J. Theor. Biol. 132 (1988), 469-478. MR 89j:92071
  • [S89] M.E. Schaffer: Are profit-maximisers the best survivors?, J. Econ. Behav. Org. 12 (1989), 29-45.
  • [Sc97] K.H. Schlag: Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits, J. Econ. Theory 78 (1998), 130-156. MR 99h:90121
  • [Sch01] S. Schreiber: Urn models, replicator processes and random genetic drift, SIAM J. Applied Math 61 (2001), 2148-2167. MR 2002h:92019
  • [ScS83] P. Schuster, K. Sigmund: Replicator dynamics, J. Theor. Biology 100 (1983), 533-538. MR 85i:92006
  • [Se00] A. Sela: Fictitious play in $2\times 3$ games, Games Econ. Behav. 31 (2000), 152-162. MR 2000m:91006
  • [Se80] R. Selten: A note on evolutionarily stable strategies in asymmetrical animal conflicts, J. Theor. Biology 84 (1980), 93-101. MR 81d:92016
  • [Se98] R. Sethi: Strategy-specific barriers to learning and nonmonotonic selection dynamics, Games Econ. Behav. 23 (1998), 284-309. MR 99b:90168
  • [Sh64] L. Shapley: Some topics in two-person games, Ann. Math. Studies 5 (1964), 1-28. MR 33:7140
  • [Si87] K. Sigmund: Game dynamics, mixed strategies and gradient systems, Theor. Pop. Biol. 32 (1987), 114-126. MR 88j:92065
  • [Si93] K. Sigmund: Games of Life. Penguin, Harmondsworth. 1993.
  • [SHN01] K. Sigmund, C. Hauert and M.A. Nowak: Reward and punishment in minigames, Proc. Nat. Acad. Sci. 98 (2001), 10757-10762.
  • [SL96] B. Sinervo and C.M. Lively: The rock-paper-scissors game and the evolution of alternative male strategies, Nature 380 (1996), 240-243.
  • [Sk90] B. Skyrms: The Dynamics of Rational Deliberation. Harvard UP (1990). MR 92d:90008
  • [Sk01] B. Skyrms: The stag hunt, Proceedings and Addresses of the American Philosophical Association. To appear.
  • [Sm95] H. Smith: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Amer. Math. Soc. Math. Surveys and Monographs, Vol. 41 (1995). MR 96c:34002
  • [Sw92] J. Swinkels: Evolutionary stability with equilibrium entrants, J. Econ. Theory 57 (1992), 306-32. MR 93k:90125
  • [Sw93] J. Swinkels: Adjustment dynamics and rational play in games, Games Econ. Behav. 5 (1993), 455-84. MR 94b:90112
  • [TaKi91] T. Takada, J. Kigami: The dynamical attainability of ESS in evolutionary games, J. Math. Biol. 29 (1991), 513-529. MR 92f:92030
  • [Tay89] P.D. Taylor: Evolutionary stability in one-parameter models under weak selection. Theor. Pop. Biol. 36 (1989), 125-143. MR 90k:92030
  • [TaJ78] P.D. Taylor, L. Jonker: Evolutionarily stable strategies and game dynamics, Math. Biosciences 40 (1978), 145-156. MR 58:9351
  • [Th85] B. Thomas: On evolutionarily stable sets, J. Math. Biol. 22 (1985), 105-115. MR 86m:92039
  • [Tr74] R.L. Trivers: Parent-offspring conflict, Amer. Zool. 14 (1974), 249-264.
  • [vD91] E. van Damme: Stability and perfection of Nash equilibria, 2nd edition, Springer, Berlin (1991). MR 95f:90001
  • [V96] F. Vega-Redondo: Evolution, games, and economic theory. Oxford UP (1996).
  • [V97] F. Vega-Redondo: The evolution of Walrasian behavior. Econometrica 65 (1997), 375-384.
  • [Vi89] G.T. Vickers: Spatial patterns and ESS's, J. Theor. Biology 140 (1989) 129-135. MR 90j:92016
  • [We95] J. Weibull: Evolutionary Game Theory. MIT Press, Cambridge, Mass. (1995). MR 96f:90004
  • [Wei91] F. Weissing: Evolutionary stability and dynamic stability in a class of evolutionary normal form games. In R. Selten (ed.) Game Equilibrium Models I, Berlin, Springer (1991), 29-97.
  • [Wei96] F. Weissing: Genetic versus phenotypic models of selection: can genetics be neglected in a long-term perspective?, J. Math. Biol. 34 (1996), 533-555.
  • [Y93] H.P. Young: The evolution of conventions. Econometrica 61 (1993), 57-84. MR 93j:92038
  • [Y98] H.P. Young: Individual strategy and social structure, Princeton UP (1998).
  • [Ze80] E.C. Zeeman: Population dynamics from game theory. In:Global Theory of Dynamical Systems. Springer Lecture Notes in Mathematics 819 (1980). MR 82e:58076
  • [Ze93] M.L. Zeeman: Hopf bifurcations in competitive three dimensional Lotka-Volterra systems, Dynam. Stability Systems 8 (1993), 189-217. MR 94j:34044
  • [ZZ02] E.C. Zeeman, M.L. Zeeman: An $n$-dimensional competitive Lotka-Volterra system is generically determined by its edges, Nonlinearity 15 (2002), 2019-2032.
  • [ZZ03] E.C. Zeeman, M.L. Zeeman: From local to global behavior in competitive Lotka-Volterra systems, Trans. Amer. Math. Soc. 355 (2003), 713-734.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 91A22, 91-02, 92-02, 34D20

Retrieve articles in all journals with MSC (2000): 91A22, 91-02, 92-02, 34D20

Additional Information

Josef Hofbauer
Affiliation: (Hofbauer) Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Vienna, Austria

Karl Sigmund
Affiliation: (Sigmund) Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Vienna, Austria; (Sigmund) IIASA, A-2361 Laxenburg, Austria

Received by editor(s): March 7, 2003
Received by editor(s) in revised form: April 12, 2003
Published electronically: July 10, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society