Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

   
 

 

On a theorem of Jordan


Author: Jean-Pierre Serre
Journal: Bull. Amer. Math. Soc. 40 (2003), 429-440
MSC (2000): Primary 06-XX, 11-XX, 11F11
DOI: https://doi.org/10.1090/S0273-0979-03-00992-3
Published electronically: July 17, 2003
MathSciNet review: 1997347
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The theorem of Jordan which I want to discuss here dates from 1872. It is an elementary result on finite groups of permutations. I shall first present its translations in Number Theory and Topology.


References [Enhancements On Off] (What's this?)

  • 1. E. Artin, Über eine neue Art von L-Reihen, Hamb. Abh. 3 (1923), 89-108 (= Coll. Papers, 105-124).
  • 2. Nigel Boston, Walter Dabrowski, Tuval Foguel et al., The proportion of fixed-point-free elements of a transitive permutation group, Comm. Algebra 21 (1993), no. 9, 3259–3275. MR 1228762, https://doi.org/10.1080/00927879308824728
  • 3. W. Burnside, Theory of Groups of Finite Order, 2nd edition, Cambridge Univ. Press, 1911 (= Dover Publ., 1955). MR 16:1086c
  • 4. Peter J. Cameron and Arjeh M. Cohen, On the number of fixed point free elements in a permutation group, Discrete Math. 106/107 (1992), 135–138. A collection of contributions in honour of Jack van Lint. MR 1181907, https://doi.org/10.1016/0012-365X(92)90540-V
  • 5. Teresa Crespo, Galois representations, embedding problems and modular forms, Collect. Math. 48 (1997), no. 1-2, 63–83. Journées Arithmétiques (Barcelona, 1995). MR 1464017
  • 6. F. G. Frobenius, Über die Congruenz nach einem aus zwei endlichen Gruppen gebildeten Doppelmodul, J. Crelle 101 (1887), 279-299 (= Ges. Abh., II, 304-330).
  • 7. F. G. Frobenius, Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe, Sitz. Akad. Wiss. Berlin (1896), 689-703 (= Ges. Abh., II, 719-733).
  • 8. F. G. Frobenius, Über auflösbare Gruppen IV, Sitz. Akad. Wiss. Berlin (1901), 1216-1230 (= Ges. Abh., III, 189-203).
  • 9. C. Jordan, Recherches sur les substitutions, J. Liouville 17 (1872), 351-367 (= Oe. I. 52).
  • 10. L. Kronecker, Über die Irreductibilität von Gleichungen, Sitz. Akad. Wiss. Berlin (1880), 155-162 (= Werke, II, 83-93).
  • 11. P. Stevenhagen and H. W. Lenstra Jr., Chebotarëv and his density theorem, Math. Intelligencer 18 (1996), no. 2, 26–37. MR 1395088, https://doi.org/10.1007/BF03027290
  • 12. Jacques Martinet, Petits discriminants des corps de nombres, Number theory days, 1980 (Exeter, 1980) London Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 151–193 (French). MR 697261
  • 13. R. W. K. Odoni, On the norms of algebraic integers, Mathematika 22 (1975), no. 1, 71–80. MR 0424757, https://doi.org/10.1112/S0025579300004514
  • 14. Michael Rubinstein and Peter Sarnak, Chebyshev’s bias, Experiment. Math. 3 (1994), no. 3, 173–197. MR 1329368
  • 15. E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand. 4 (1956), 287-302. MR 19:7f
  • 16. Jean-Pierre Serre, Divisibilité de certaines fonctions arithmétiques, Enseignement Math. (2) 22 (1976), no. 3-4, 227–260. MR 0434996
  • 17. J.-P. Serre, Modular forms of weight one and Galois representations, Algebraic number fields: 𝐿-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 193–268. MR 0450201
  • 18. Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559
  • 19. N. Tschebotareff (Chebotarev), Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann. 95 (1925), 191-228.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 06-XX, 11-XX, 11F11

Retrieve articles in all journals with MSC (2000): 06-XX, 11-XX, 11F11


Additional Information

Jean-Pierre Serre
Affiliation: Collège de France, 3, Rue d’Ulm, Paris, France
Email: serre@dmi.ens.fr

DOI: https://doi.org/10.1090/S0273-0979-03-00992-3
Received by editor(s): March 1, 2003
Published electronically: July 17, 2003
Additional Notes: This text first appeared in Math Medley 29 (2002), 3–18. The writing was done with the help of Heng Huat Chan. ©2002 Singapore Mathematical Society. Reprinted with permission
Article copyright: © Copyright 2002 Singapore Mathematical Society