Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

KAM theory: The legacy of Kolmogorov's 1954 paper


Author: Henk W. Broer
Translated by:
Journal: Bull. Amer. Math. Soc. 41 (2004), 507-521
MSC (2000): Primary 37C55, 37C70, 37A60, 34C15
DOI: https://doi.org/10.1090/S0273-0979-04-01009-2
Published electronically: February 9, 2004
MathSciNet review: 2083638
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Kolmogorov-Arnold-Moser (or KAM) theory was developed for conservative dynamical systems that are nearly integrable. Integrable systems in their phase space usually contain lots of invariant tori, and KAM theory establishes persistence results for such tori, which carry quasi-periodic motions. We sketch this theory, which begins with Kolmogorov's pioneering work.


References [Enhancements On Off] (What's this?)

  • 1. V. I. Arnol′d, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk 18 (1963), no. 5 (113), 13–40 (Russian). MR 0163025
  • 2. V. I. Arnol′d, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), no. 6 (114), 91–192 (Russian). MR 0170705
  • 3. V. I. Arnol′d, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR 156 (1964), 9–12 (Russian). MR 0163026
  • 4. V. I. Arnol′d, Small denominators. I. Mapping the circle onto itself, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 21–86 (Russian). MR 0140699
  • 5. V. I. Arnol′d, Geometrical methods in the theory of ordinary differential equations, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 250, Springer-Verlag, New York, 1988. Translated from the Russian by Joseph Szücs [József M. Szűcs]. MR 947141
  • 6. V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR 0474391
    V. I. Arnol′d, Mathematical methods of classical mechanics, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein; Graduate Texts in Mathematics, 60. MR 0690288
    V. I. Arnol′d, Mathematical methods of classical mechanics, 2nd ed., Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 997295
  • 7. V. I. Arnol′d and A. Avez, Ergodic problems of classical mechanics, Translated from the French by A. Avez, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0232910
  • 8. J. Bricmont, Science of chaos or chaos in science?, The flight from science and reason (New York, 1995) Ann. New York Acad. Sci., vol. 775, New York Acad. Sci., New York, 1996, pp. 131–175. MR 1607505, https://doi.org/10.1111/j.1749-6632.1996.tb23135.x
  • 9. Jean Bricmont, Krzysztof GawÈ©dzki, and Antti Kupiainen, KAM theorem and quantum field theory, Comm. Math. Phys. 201 (1999), no. 3, 699–727. MR 1685894, https://doi.org/10.1007/s002200050573
  • 10. Paul Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85–141. MR 741725, https://doi.org/10.1090/S0273-0979-1984-15240-6
  • 11. H.W. Broer, A.N. Kolmogorov: la `K' de KAM, Bull. de la Societat Catalana de Matemàtiques (2004), to appear.
  • 12. H.W. Broer, H. Hanßmann, À. Jorba, J. Villanueva and F.O.O. Wagener, Normal-internal resonances in quasiperiodically forced oscillators: a conservative approach, Nonlinearity 16 (2003) 1751-1791.
  • 13. H.W. Broer, H. Hanßmann and J. You, Bifurcations of normally parabolic tori in Hamiltonian systems, Preprint University of Groningen. Submitted for publication.
  • 14. H.W. Broer, H. Hanßmann and J. You, Umbilical torus bifurcations in Hamiltonian systems, Preprint University of Groningen. Submitted for publication.
  • 15. H. W. Broer and G. B. Huitema, A proof of the isoenergetic KAM-theorem from the “ordinary” one, J. Differential Equations 90 (1991), no. 1, 52–60. MR 1094448, https://doi.org/10.1016/0022-0396(91)90160-B
  • 16. H. W. Broer and G. B. Huitema, Unfoldings of quasi-periodic tori in reversible systems, J. Dynam. Differential Equations 7 (1995), no. 1, 191–212. MR 1321710, https://doi.org/10.1007/BF02218818
  • 17. Hendrik W. Broer, George B. Huitema, and Mikhail B. Sevryuk, Quasi-periodic motions in families of dynamical systems, Lecture Notes in Mathematics, vol. 1645, Springer-Verlag, Berlin, 1996. Order amidst chaos. MR 1484969
  • 18. H. W. Broer, G. B. Huitema, F. Takens, and B. L. J. Braaksma, Unfoldings and bifurcations of quasi-periodic tori, Mem. Amer. Math. Soc. 83 (1990), no. 421, viii+175. MR 1041003, https://doi.org/10.1090/memo/0421
  • 19. H.W. Broer, J. Puig and C. Simó, Resonance tongues and instability pockets in the quasi-periodic Hill-Schrödinger equation, Commun. Math. Phys. 641 (2003) 467-503.
  • 20. A. D. Brjuno, On convergence of transforms of differential equations to the normal form, Dokl. Akad. Nauk SSSR 165 (1965), 987–989 (Russian). MR 0192098
  • 21. L. Chierchia and G. Gallavotti, Drift and diffusion in phase space, Ann. Inst. H. Poincaré Phys. Théor. 60 (1994), no. 1, 144 (English, with English and French summaries). MR 1259103
  • 22. M.C. Ciocci, Bifurcation of periodic orbits and persistence of quasi periodic solutions in families of reversible systems. Ph.D. Thesis, Gent 2003.
  • 23. M.C. Ciocci, A. Litvak-Hinenzon and H.W. Broer, Survey on dissipative KAM theory including quasi-periodic bifurcations, based on lectures by Henk Broer. To appear in J. Montaldi and T. Ratiu (eds.): Peyresq Lectures on Geometric Mechanics and Symmetry, LMS Lecture Notes Series 306. Cambridge University Press.
  • 24. H. Cremer, Zum Zentrumproblem, Math. Ann. 98 (1927) 151-163.
  • 25. Robert L. Devaney, An introduction to chaotic dynamical systems, 2nd ed., Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. MR 1046376
  • 26. Florin Diacu and Philip Holmes, Celestial encounters, Princeton University Press, Princeton, NJ, 1996. The origins of chaos and stability. MR 1435973
  • 27. E. I. Dinaburg and Ja. G. Sinaĭ, The one-dimensional Schrödinger equation with quasiperiodic potential, Funkcional. Anal. i Priložen. 9 (1975), no. 4, 8–21 (Russian). MR 0470318
  • 28. L. H. Eliasson, S. B. Kuksin, S. Marmi, and J.-C. Yoccoz, Dynamical systems and small divisors, Lecture Notes in Mathematics, vol. 1784, Springer-Verlag, Berlin; Centro Internazionale Matematico Estivo (C.I.M.E.), Florence, 2002. Lectures from the C.I.M.E. Summer School held in Cetraro, June 13–20, 1998; Edited by Marmi and Yoccoz; Fondazione CIME/CIME Foundation Subseries. MR 1924909
  • 29. Jürg Fröhlich and Thomas Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Comm. Math. Phys. 88 (1983), no. 2, 151–184. MR 696803
  • 30. Giovanni Gallavotti, Statistical mechanics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1999. A short treatise. MR 1707309
  • 31. G. Gallavotti, F. Bonetto and G. Gentile, Aspects of the ergodic, qualitative and statistical theory of motion. To appear Springer Verlag. Preliminary version at http://ipparco.roma1.infn.it/libri.html.
  • 32. G. Gallavotti, G. Gentile, and V. Mastropietro, Field theory and KAM tori, Math. Phys. Electron. J. 1 (1995), Paper 5, approx. 13 pp.}, issn=1086-6655, review=\MR{1359460},.
  • 33. Heinz Hanßmann, The quasi-periodic centre-saddle bifurcation, J. Differential Equations 142 (1998), no. 2, 305–370. MR 1601868, https://doi.org/10.1006/jdeq.1997.3365
  • 34. Michael-Robert Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5–233 (French). MR 538680
  • 35. E. Hopf, A mathematical example displaying features of turbulence. Commun. Appl. Math. 1 (1948) 303-322. MR 10:716a
  • 36. H.H. de Jong, Quasiperiodic breathers in systems of weakly coupled pendulums: Applications of KAM theory to classical and statistical mechanics. Ph.D. Thesis, Groningen 1999.
  • 37. Àngel Jorba and Jordi Villanueva, On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems, Nonlinearity 10 (1997), no. 4, 783–822. MR 1457746, https://doi.org/10.1088/0951-7715/10/4/001
  • 38. T. Kappeler and J. Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge 45. Springer Verlag 2003.
  • 39. A.N. Kolmogorov, On the conservation of conditionally periodic motions for a small change in Hamilton's function [in Russian], Dokl. Akad. Nauk SSSR 98 (1954) 525-530; English translation in LNP 93 (1979) 51-56. MR 16:924c
  • 40. A. N. Kolmogorov, Théorie générale des systèmes dynamiques et mécanique classique, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, Vol. 1, Erven P. Noordhoff N.V., Groningen; North-Holland Publishing Co., Amsterdam, 1957, pp. 315–333 (French). MR 0097598
  • 41. Sergej B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Mathematics, vol. 1556, Springer-Verlag, Berlin, 1993. MR 1290785
  • 42. S. Kuksin, V. Lazutkin, and J. Pöschel (eds.), Seminar on Dynamical Systems, Progress in Nonlinear Differential Equations and their Applications, vol. 12, Birkhäuser Verlag, Basel, 1994. Papers from the seminar held in St. Petersburg, October 14–25 and November 18–29, 1991. MR 1279384
  • 43. L.D. Landau, On the problem of turbulence, Akad. Nauk. 44 (1944) 311-314. MR 6:246c
  • 44. L. D. Landau and E. M. Lifshitz, Fluid mechanics, Translated from the Russian by J. B. Sykes and W. H. Reid. Course of Theoretical Physics, Vol. 6, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959. MR 0108121
  • 45. Jacques Laskar, Large scale chaos and marginal stability in the solar system, XIth International Congress of Mathematical Physics (Paris, 1994) Int. Press, Cambridge, MA, 1995, pp. 75–120. MR 1370669
  • 46. Rafael de la Llave, A tutorial on KAM theory, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 175–292. MR 1858536, https://doi.org/10.1090/pspum/069/1858536
  • 47. R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity 7 (1994), no. 6, 1623–1643. MR 1304442
  • 48. S. Marmi, An introduction to small divisor problems. Dipartimento di Matematica dell'Università di Pisa 2000.
  • 49. J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962 (1962), 1–20. MR 0147741
  • 50. J. Moser, On the theory of quasiperiodic motions, SIAM Rev. 8 (1966), 145–172. MR 0203160, https://doi.org/10.1137/1008035
  • 51. Jürgen Moser, Convergent series expansions for quasi-periodic motions, Math. Ann. 169 (1967), 136–176. MR 0208078, https://doi.org/10.1007/BF01399536
  • 52. Jürgen K. Moser, Lectures on Hamiltonian systems, Mem. Amer. Math. Soc. No. 81, Amer. Math. Soc., Providence, R.I., 1968. MR 0230498
  • 53. Jürgen Moser, Stable and random motions in dynamical systems, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J; Annals of Mathematics Studies, No. 77. MR 0442980
  • 54. N. N. Nehorošev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Uspehi Mat. Nauk 32 (1977), no. 6(198), 5–66, 287 (Russian). MR 0501140
  • 55. S. Newhouse, D. Ruelle, and F. Takens, Occurrence of strange Axiom A attractors near quasiperiodic flows on 𝑇^{𝑚},𝑚≥3, Comm. Math. Phys. 64 (1978/79), no. 1, 35–40. MR 516994
  • 56. John C. Oxtoby, Measure and category, 2nd ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1980. A survey of the analogies between topological and measure spaces. MR 584443
  • 57. Jürgen Pöschel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math. 35 (1982), no. 5, 653–696. MR 668410, https://doi.org/10.1002/cpa.3160350504
  • 58. Jürgen Pöschel, On elliptic lower-dimensional tori in Hamiltonian systems, Math. Z. 202 (1989), no. 4, 559–608. MR 1022821, https://doi.org/10.1007/BF01221590
  • 59. Jürgen Pöschel, A lecture on the classical KAM theorem, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 707–732. MR 1858551, https://doi.org/10.1090/pspum/069/1858551
  • 60. J. Puig, Cantor Spectrum for the Almost Mathieu Operator. Corollaries of localization, reducibility and duality. Preprint archive mp_arc 03-396 (2003).
  • 61. David Ruelle, Elements of differentiable dynamics and bifurcation theory, Academic Press, Inc., Boston, MA, 1989. MR 982930
  • 62. David Ruelle and Floris Takens, On the nature of turbulence, Comm. Math. Phys. 20 (1971), 167–192. MR 0284067
  • 63. Helmut Rüssmann, Konvergente Reihenentwicklungen in der Störungstheorie der Himmelsmechanik, Selecta Mathematica, V (German), Heidelberger Taschenbücher, vol. 201, Springer, Berlin-New York, 1979, pp. 93–260 (German). MR 597727
  • 64. Mikhail B. Sevryuk, New results in the reversible KAM theory, Seminar on Dynamical Systems (St. Petersburg, 1991) Progr. Nonlinear Differential Equations Appl., vol. 12, Birkhäuser, Basel, 1994, pp. 184–199. MR 1279398, https://doi.org/10.1007/978-3-0348-7515-8_14
  • 65. C.L. Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942) 607-612. MR 4:76c
  • 66. H. Whitney, Differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36(2) (1934) 369-387.
  • 67. J.-C. Yoccoz, 𝐶¹-conjugaison des difféomorphismes du cercle, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 814–827 (French). MR 730301, https://doi.org/10.1007/BFb0061448
  • 68. Jean-Christophe Yoccoz, Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque 231 (1995), 3–88 (French). Petits diviseurs en dimension 1. MR 1367353
  • 69. J.-C. Yoccoz, Analytic linearization of circle diffeomorphisms. In: S. Marmi, L.H. Eliasson, S.B. Kuksin and J.-C. Yoccoz (eds.), Dynamical Systems and Small Divisors, LNM 1784 (2002) 125-174, Springer Verlag.
  • 70. E. Zehnder, An implicit function theorem for small divisor problems, Bull. Amer. Math. Soc. 80 (1974), 174–179. MR 0339259, https://doi.org/10.1090/S0002-9904-1974-13407-5
  • 71. E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. II, Comm. Pure Appl. Math. 29 (1976), no. 1, 49–111. MR 0426055, https://doi.org/10.1002/cpa.3160290104

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 37C55, 37C70, 37A60, 34C15

Retrieve articles in all journals with MSC (2000): 37C55, 37C70, 37A60, 34C15


Additional Information

Henk W. Broer
Affiliation: Department of Mathematics and Computing Science, University of Groningen, Blauwborgje 3, NL-9747 AC, Groningen, The Netherlands
Email: broer@math.rug.nl

DOI: https://doi.org/10.1090/S0273-0979-04-01009-2
Received by editor(s): November 18, 2003
Received by editor(s) in revised form: December 16, 2003
Published electronically: February 9, 2004
Article copyright: © Copyright 2004 American Mathematical Society