Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

   
 
 

 

The notion of dimension in geometry and algebra


Author: Yuri I. Manin
Journal: Bull. Amer. Math. Soc. 43 (2006), 139-161
MSC (2000): Primary 14H10, 14N10
DOI: https://doi.org/10.1090/S0273-0979-06-01081-0
Published electronically: February 8, 2006
MathSciNet review: 2216108
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This talk reviews some mathematical and physical ideas related to the notion of dimension. After a brief historical introduction, various modern constructions from fractal geometry, noncommutative geometry, and theoretical physics are invoked and compared.

Glenn Gould disapproved of his own recording of Goldberg variations.

``There is a lot of piano playing going on there, and I

mean that as the most disparaging comment possible.''

NYRB, Oct. 7, 2004, p. 10


References [Enhancements On Off] (What's this?)

  • [And] G. Anderson. Cyclotomy and a covering of the Taniyama group. Comp. Math., 57 (1985), 153-217. MR 0827351 (88e:11045)
  • [At] M. Atiyah. Commentary on the article of Yu. I. Manin: ``New dimensions in geometry''. In: Springer Lecture Notes in Math., 1111, 1985, 103-109. MR 0797417 (87j:14031)
  • [BeBD] A. Beilinson, J. Bernstein, P. Deligne. Faisceaux pervers. Astérisque, 100 (1982), 5-171. MR 0751966 (86g:32015)
  • [Br] T. Bridgeland. Stability conditions on triangulated categories. Preprint math.AG/0212237
  • [Co1] A. Connes. $ C^{*}$ algèbres et géométrie differentielle. C. R. Acad. Sci. Paris, Sér. A-B, 290 (1980), A599-A604. MR 0572645 (81c:46053)
  • [Co2] A. Connes. Noncommutative Geometry. Academic Press, 1994. MR 1303779 (95j:46063)
  • [Co3] A. Connes. Geometry from the spectral point of view. Lett. Math. Phys. Vol. 34 (1995), 203-238. MR 1345552 (96j:46074)
  • [Co4] A. Connes. Gravity coupled with matter and the foundation of non-commutative geometry. Comm. Math. Phys., 182 (1996), no. 1, 155-176. MR 1441908 (98f:58024)
  • [Co5] A. Connes. Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Selecta Math. (N.S.), 5 (1999), no. 1, 29-106. MR 1694895 (2000i:11133)
  • [Co6] A. Connes. Cyclic cohomology, quantum group symmetries and the local index formula for $ SU_{q}(2)$, J. Inst. Math. Jussieu, 3 (2004), no. 1, 17-68. MR 2036597 (2005f:58044)
  • [CoKr] A. Connes, D. Kreimer. Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Comm. Math. Phys., 210:1 (2000), 249-273. MR 1748177 (2002f:81070)
  • [CoMar1] A. Connes, M. Marcolli. Quantum statistical mechanics of $ \mathbf{Q}$-lattices. (From Physics to Number Theory via Noncommutative Geometry, Part I). Preprint math.NT/0404128
  • [CoMar2] A. Connes, M. Marcolli. Renormalization and motivic Galois theory. Int. Math. Res. Notices, No. 76 (2004), 4073-4092. MR 2109986
  • [CoMos] A. Connes, H. Moscovici. The local index formula in noncommutative geometry. GAFA Vol. 5 (1995), No. 2, 174-243. MR 1334867 (96e:58149)
  • [ConsMar] C. Consani, M. Marcolli. Noncommutative geometry, dynamics, and $ \infty $-adic Arakelov geometry. Selecta Math. (N.S.), 10 (2004), no. 2, 167-251. MR 2080121 (2005g:58055)
  • [DaLSSV] L. Dabrowski, G. Landi, A. Sitarz, W. van Suijlekom, J.C. Varilly. The Dirac operator on $ SU_{q}(2)$. Preprint math.QA/0411609.
  • [De1] C. Deninger. Local $ L$-factors of motives and regularized determinants. Inv. Math., 107 (1992), 135-150. MR 1135468 (93a:11056)
  • [De2] C. Deninger. Motivic $ L$-functions and regularized determinants. Proc. Symp. Pure Math., 55:1 (1994), 707-743. MR 1265547 (94m:11077)
  • [De3] C. Deninger. Some analogies between number theory and dynamical systems on foliated spaces. Doc. Math. J. DMV. Extra volume ICM I (1998), 23-46. MR 1648030 (99g:11084)
  • [De4] C. Deninger. A note on arithmetic topology and dynamical systems. Contemp. Math. 300, AMS, Providence, RI (2002), 99-114. MR 1936368 (2004c:14030)
  • [Dou] M. Douglas. Dirichlet branes, homological mirror symmetry, and stability. In: Proceedings of the ICM 2002, Higher Education Press, Beijing, 2002, vol. III, 395-408. Preprint math.AG/0207021. MR 1957548 (2004c:81200)
  • [Ha] M. Haran. The mysteries of the real prime. Clarendon Press, Oxford, 2001. MR 1872029 (2003b:11085)
  • [He] T. L. Heath. The thirteen books of Euclid's Elements. Translation, Introduction and Commentary. Cambridge UP, 1908.
  • [KalW] W. Kalau, M. Walse. Gravity, non-commutative geometry and the Wodzicki residue, J. Geom. Phys., 16 (1995), 327-344. MR 1336738 (96c:58016)
  • [KapSm] M. Kapranov, A. Smirnov. Cohomology determinants and reciprocity laws: number field case. Unpublished.
  • [Ka] N. Katz. $ p$-adic properties of modular schemes and modular forms. Springer LNM, 350 (1973). MR 0447119 (56:5434)
  • [Kr] D. Kreimer. On the Hopf algebra structure of perturbative Quantum Field Theory. Adv. Theor. Math. Phys., 2:2 (1998), 303-334. MR 1633004 (99e:81156)
  • [LaPo] M. Lapidus, C. Pomerance. Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals. C. R. Acad. Sci. Paris, Sér. I Math., 310 (1990), 343-348. MR 1046509 (91d:58248)
  • [LavF1] M. Lapidus, M. van Frankenhuysen. Complex dimensions of fractal strings and oscillatory phenomena in fractal geometry and arithmetic. In: Spectral Problems in Geometry and Arithmetic (ed. by T. Branson), Contemp. Math., vol. 237, AMS, Providence, RI, 1999, 87-105. MR 1710790 (2001c:11093)
  • [LavF2] M. Lapidus, M. van Frankenhuysen. Fractal Geometry and number theory. Complex dimensions of fractal strings and zeros of zeta functions. Birkhäuser, 2000. MR 1726744 (2001b:11079)
  • [LZ1] J. Lewis, D. Zagier. Period functions for Maass wave forms. Ann. of Math., 153 (2001), 191-258. MR 1826413 (2003d:11068)
  • [LZ2] J. Lewis, D. Zagier. Period functions and the Selberg zeta function for the modular group. In: The mathematical beauty of physics, Adv. Series in Math. Physics, 24, World Sci. Publ., River Edge, NJ (1997), 83-97. MR 1490850 (99c:11108)
  • [Mand] B. Mandelbrot. The fractal geometry of nature. Freeman & Co., NY, 1982. MR 0665254 (84h:00021)
  • [Ma] D. Yu. Manin. Personal communication.
  • [Ma1] Yu. Manin. New dimensions in geometry. Russian: Uspekhi Mat. Nauk, 39:6 (1984), 47-73. English: Russian Math. Surveys, 39:6 (1984), 51-83; and Springer Lecture Notes in Math., 1111, 1985, 59-101. MR 0771098 (86d:14002), MR 0797416 (87j:14030)
  • [Ma2] Yu. Manin. Three-dimensional hyperbolic geometry as $ \infty $-adic Arakelov geometry. Inv. Math., 104 (1991), 223-244. MR 1098608 (92f:14019)
  • [Ma3] Yu. Manin. Lectures on zeta functions and motives (according to Deninger and Kurokawa). In: Columbia University Number Theory Seminar, Astérisque, 228 (1995), 121-164. MR 1330931 (96d:11076)
  • [Ma4] Yu. Manin. Von Zahlen und Figuren. Preprint math.AG/0201005.
  • [Ma5] Yu. Manin. Real multiplication and noncommutative geometry. In: The legacy of Niels Henrik Abel, ed. by O. A. Laudal and R. Piene, Springer Verlag, Berlin, 2004, 685-727. Preprint math.AG/0202109. MR 2077591
  • [MaMar] Yu. Manin, M. Marcolli. Continued fractions, modular symbols, and non-commutative geometry. Selecta Math., new ser., 8 (2002), 475-521. Preprint math.NT/0102006. MR 1931172 (2004a:11039)
  • [May] D. Mayer. Continued fractions and related transformations. In: Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Eds. T. Bedford et al., Oxford University Press, Oxford, 1991, 175-222. MR 1130177
  • [Maz] B. Mazur. Note on étale cohomology of number fields. Ann. Sci. ENS, 6 (1973), 521-552. MR 0344254 (49:8993)
  • [Mor] M. Morishita. On certain analogies between knots and primes. Jour. für die reine u. angew. Math., 550 (2002), 141-167. MR 1925911 (2003k:57008)
  • [PoS] A. Polishchuk, A. Schwarz. Categories of holomorphic bundles on noncommutative two-tori. Comm. Math. Phys., 236 (2003), 135-159. Preprint math.QA/0211262. MR 1977884 (2004k:58011)
  • [Po1] A. Polishchuk. Noncommutative two-tori with real multiplication as noncommutative projective varieties. Preprint math.AG/0212306.
  • [Po2] A. Polishchuk. Classification of holomorphic vector bundles on noncommutative two-tori. Preprint math.QA/0308136.
  • [Rie] M. Rieffel. Von Neumann algebras associated with pairs of lattices in Lie groups. Math. Ann., 257 (1981), 403-418. MR 0639575 (84f:22010)
  • [Se] J.-P. Serre. Formes modulaires et fonctions zêta $ p$-adiques. Springer LNM, 350 (1973), 191-268. MR 0404145 (53:7949a)
  • [Sm1] A. Smirnov. Hurwitz inequalities for number fields. St. Petersburg Math. J., 4 (1993), 357-375. MR 1182400 (93h:11065)
  • [Sm2] A. Smirnov. Letters to Yu. Manin of Sept. 29 and Nov. 29, 2003.
  • [Sou] C. Soulé. Les variétés sur le corps à un elément. Moscow Math. Jour., 4:1 (2004), 217-244. MR 2074990 (2005h:14002)
  • [Ta] J. Tate. Duality theorems in Galois cohomology over number fields. Proc. ICM, Stockholm, 1962, 288-295. MR 0175892 (31:168)
  • [Ti] J. Tits. Sur les analogues algébriques des groupes semi-simples complexes. Colloque d'Algèbre sup., Bruxelles 1956; Louvain, 1957, 261-289. MR 0108765 (21:7477)
  • [Vy] M. Vybornov. Constructible sheaves on simplicial complexes and Koszul duality. Math. Res. Letters, 5 (1998), 675-683. MR 1666864 (2000h:18021)
  • [We] A. Weil. Elliptic functions according to Eisenstein and Kronecker. Springer Verlag, Berlin, 1976 and 1999. MR 0562289 (58:27769a)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 14H10, 14N10

Retrieve articles in all journals with MSC (2000): 14H10, 14N10


Additional Information

Yuri I. Manin
Affiliation: Northwestern University, Evanston, Illinois, USA
Address at time of publication: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

DOI: https://doi.org/10.1090/S0273-0979-06-01081-0
Received by editor(s): April 24, 2005
Published electronically: February 8, 2006
Additional Notes: Based on the talks delivered at the AMS sectional meeting, Northwestern University, October 2004; and Blyth Lectures, University of Toronto, November 2004
Article copyright: © Copyright 2006 Yuri I. Manin

American Mathematical Society