Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Henryk Iwaniec and Emmanuel Kowalski
Title: Analytic number theory
Additional book information: Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004, xii+618 pp., ISBN 0-8218-3633-1, US$99.00

References [Enhancements On Off] (What's this?)

  • 1. E. Bombieri, Problems of the millennium: The Riemann Hypothesis, The Clay Mathematics Institute, 2000. http://www.claymath.org/millennium/Riemann_Hypothesis/ Official_Problem_Description.pdf.
  • 2. H. Davenport, Multiplicative Number Theory, Graduate Studies in Mathematics, vol. 74, 3rd ed. (H. L. Montgomery, ed.), Springer-Verlag, New York, 2000. MR 1790423 (2001f:11001)
  • 3. D. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 624-663. MR 0450233 (56:8529)
  • 4. G. Greaves, Sieves in Number Theory, Springer-Verlag, Berlin-Heidelberg, 2001. MR 1836967 (2002i:11092)
  • 5. B. Gross and D. Zagier, Heegner points and derivatives of $ L$-series, Invent. Math. 84 (1986), 225-320. MR 0833192 (87j:11057)
  • 6. B. Gross and D. Zagier, Points de Heegner et dérivées de fonctions $ L$, C. R. Acad. Sci. Paris Sér. I. Math. 297 (1983), 85-87. MR 0720914 (85d:11062)
  • 7. H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974. MR 0424730 (54:12689)
  • 8. H. Iwaniec and P. Sarnak, The non-vanishing of central values of automorphic $ L$-functions and Landau-Siegel zeros, Israel J. Math. 120 (2000), part A, 155-177. MR 1815374 (2002b:11115)
  • 9. H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, 17, American Mathematical Society, Providence, RI, 1997. MR 1474964 (98e:11051)
  • 10. N. Katz and P. Sarnak, Zeros of zeta functions and symmetry, BAMS 36 (1999), 1-36. MR 1640151 (2000f:11114)
  • 11. H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CMBS No. 84, Amer. Math. Soc., Providence, Rhode Island, 1994. MR 1297543 (96i:11002)
  • 12. A. Odlyzko, The $ 10^{20}$-th Zero of the Riemann Zeta Function and 70 Million of Its Neighbors, http://www.dtc.umn.edu/odlyzko/unpublished.
  • 13. J. Oesterlé, Nombres de classes des corps quadratiques imaginaires, Astérisque 121-122 (1985), 309-323. MR 0768967 (86k:11064)
  • 14. B. Riemann, Über die Anzahl der Primzahlen unter einer gegbenen Grösse, Monatsber. Berlin. Akad. (1859).
  • 15. P. Sarnak, Problems of the millennium: The Riemann Hypothesis, The Clay Mathematics Institute, 2004. http://www.claymath.org/millennium/Riemann_Hypothesis/Sarnak_RH.pdf.
  • 16. P. Sarnak, Some applications of modular forms, Cambridge Tracts in Mathematics, 99, Cambridge University Press, Cambridge, 1990. MR 1102679 (92k:11045)
  • 17. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. (D. R. Heath-Brown, ed.), Oxford University Press, New York, 1986. MR 0882550 (88c:11049)
  • 18. R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge University Press, Cambridge, 1997. MR 1435742 (98a:11133)

Review Information:

Reviewer: Alexandru Zaharescu
Affiliation: University of Illinois at Urbana-Champaign
Email: zaharesc@math.uiuc.edu
Journal: Bull. Amer. Math. Soc. 43 (2006), 273-278
MSC (2000): Primary 11Fxx, 11Lxx, 11Mxx, 11Nxx
Published electronically: February 17, 2006
Review copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
American Mathematical Society