Small gaps between prime numbers: The work of Goldston-Pintz-Yildirim
Author:
K. Soundararajan
Journal:
Bull. Amer. Math. Soc. 44 (2007), 1-18
MSC (2000):
Primary 11N05
DOI:
https://doi.org/10.1090/S0273-0979-06-01142-6
Published electronically:
September 25, 2006
MathSciNet review:
2265008
Full-text PDF
References | Similar Articles | Additional Information
- [1] E. B. Bogomolny and J. P. Keating, Random matrix theory and the Riemann zeros. II. 𝑛-point correlations, Nonlinearity 9 (1996), no. 4, 911–935. MR 1399479, https://doi.org/10.1088/0951-7715/9/4/006
- [2] Enrico Bombieri, Le grand crible dans la théorie analytique des nombres, Société Mathématique de France, Paris, 1974 (French). Avec une sommaire en anglais; Astérisque, No. 18. MR 0371840
- [3] E. Bombieri and H. Davenport, Small differences between prime numbers, Proc. Roy. Soc. Ser. A 293 (1966), 1–18. MR 0199165
- [4] E. Bombieri, J. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203-251. MR 0834613 (88b:11058)
- [5] Chen Jing-run, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Kexue Tongbao (Foreign Lang. Ed.) 17 (1966), 385–386. MR 0207668
- [6] Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
- [7] Noam D. Elkies and Curtis T. McMullen, Gaps in √𝑛\bmod1 and ergodic theory, Duke Math. J. 123 (2004), no. 1, 95–139. MR 2060024, https://doi.org/10.1215/S0012-7094-04-12314-0
- [8] P. Erdos, On the difference of consecutive primes, Quart. J. Math. Oxford 6 (1935), 124-128.
- [9] P. Erdös, The difference of consecutive primes, Duke Math. J. 6 (1940), 438–441. MR 0001759
- [10] John Friedlander and Henryk Iwaniec, The polynomial 𝑋²+𝑌⁴ captures its primes, Ann. of Math. (2) 148 (1998), no. 3, 945–1040. MR 1670065, https://doi.org/10.2307/121034
- [11] P. X. Gallagher, On the distribution of primes in short intervals, Mathematika 23 (1976), no. 1, 4–9. MR 0409385, https://doi.org/10.1112/S0025579300016442
- [12] D. Goldston, J. Pintz and C. Yildirim, Primes in tuples, I, preprint, available at www.arxiv.org.
- [13] D. Goldston, S. Graham, J. Pintz and C. Yildirim, Small gaps between primes and almost primes, preprint, available at www.arxiv.org.
- [14] D. Goldston, Y. Motohashi, J. Pintz and C. Yildirim, Small gaps between primes exist, preprint, available at www.arxiv.org.
- [15] Andrew Granville, Unexpected irregularities in the distribution of prime numbers, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 388–399. MR 1403939
- [16] G.H. Hardy and J.E. Littlewood, Some problems of Parititio Numerorum (III): On the expression of a number as a sum of primes, Acta Math. 44 (1922), 1-70.
- [17] D.R. Heath-Brown, Prime twins and Siegel zeros, Proc. London Math. Soc. 47 (1983), 193-224. MR 0703977 (84m:10029)
- [18] D.R. Heath-Brown, Differences between consecutive primes, Jahresber. Deutsch. Math.-Verein. 90 (1988), 71-89. MR 0939754 (89i:11100)
- [19] D. R. Heath-Brown, Primes represented by 𝑥³+2𝑦³, Acta Math. 186 (2001), no. 1, 1–84. MR 1828372, https://doi.org/10.1007/BF02392715
- [20] M. N. Huxley, Small differences between consecutive primes. II, Mathematika 24 (1977), no. 2, 142–152. MR 0466042, https://doi.org/10.1112/S0025579300009037
- [21] Nicholas M. Katz and Peter Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 1, 1–26. MR 1640151, https://doi.org/10.1090/S0273-0979-99-00766-1
- [22] H. Maier, Small differences between prime numbers, Michigan Math. J. 35 (1988), 323-344. MR 0978303 (90e:11126)
- [23] H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 181–193. MR 0337821
- [24] H. Montgomery and R.C. Vaughan, Multiplicative number theory I: Classical theory, Cambridge University Press, 2006.
- [25] R. Rankin, The difference between consecutive primes, J. London Math. Soc. 13, 242-244.
- [26] E. Szemerédi, On sets of integers containing no 𝑘 elements in arithmetic progression, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 503–505. MR 0422191
- [27]
E. Westzynthius, Über die Verteilung der Zahlen, die zu der
ersten Primzahlen teilerfremd sind, Comm. Phys. Math. Helsingfors 25 (1931), 1-37.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 11N05
Retrieve articles in all journals with MSC (2000): 11N05
Additional Information
K. Soundararajan
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Address at time of publication:
Department of Mathematics, Stanford University, 450 Serra Mall, Building 380, Stanford, California 94305-2125
Email:
ksound@math.stanford.edu, ksound@umich.edu
DOI:
https://doi.org/10.1090/S0273-0979-06-01142-6
Received by editor(s):
July 18, 2006
Published electronically:
September 25, 2006
Additional Notes:
This article is based on a lecture presented January 14, 2006, at the AMS Special Session on Current Events, Joint Mathematics Meetings, San Antonio, TX
The author is partially supported by the National Science Foundation
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.