Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

From superconductors and four-manifolds to weak interactions


Author: Edward Witten
Journal: Bull. Amer. Math. Soc. 44 (2007), 361-391
MSC (2000): Primary 81Q99, 53D45
DOI: https://doi.org/10.1090/S0273-0979-07-01167-6
Published electronically: April 23, 2007
MathSciNet review: 2318156
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The goal of this article is to describe the concept of ``gauge symmetry breaking'' and its applications to superconductors, four-manifold theory, and particle physics.


References [Enhancements On Off] (What's this?)

  • 1. P. W. Anderson, ``Plasmons, Gauge Invariance, and Mass,'' Phys. Rev. 130 (1962) 439-442. MR 0153388 (27:3355)
  • 2. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, ``Theory of Superconductivity,'' Phys. Rev. 108 (1957) 1175-1204. MR 0095694 (20:2196)
  • 3. E. B. Bogomolny, ``Stability of Classical Solutions,'' Sov. J. Nucl. Phys. 24 (1976) 449. MR 0443719 (56:2082)
  • 4. P. A. M. Dirac, ``The Quantum Theory of the Electron,'' Proc. Roy. Soc. (London) A117 (1928) 610.
  • 5. S. Donaldson, ``Polynomial Invariants for Smooth Four-Manifolds,'' Topology 29 (1990) 257-315. MR 1066174 (92a:57035)
  • 6. F. Englert and R. Brout, ``Broken Symmetry and the Mass of Gauge Vector Mesons,'' Phys. Rev. Lett. 13 (1964) 321-3. MR 0174314 (30:4520)
  • 7. V. Ginzburg and L. Landau, ``On the Theory of Superconductivity,'' JETP 20 (1950) 1064-1082.
  • 8. H. Georgi and S. L. Glashow, ``Unity of All Elementary Particle Forces,'' Phys. Rev. Lett. 32 (1974) 438-441.
  • 9. S. L. Glashow, ``Partial Symmetries of Weak Interactions,'' Nucl. Phys. 22 (1961) 579-588.
  • 10. M. Gromov, ``Pseudoholomorphic Curves in Symplectic Manifolds,'' Invent. Math. 82 (1985) 307-347. MR 809718 (87j:53053)
  • 11. LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/.
  • 12. P. W. Higgs, ``Broken Symmetries and the Masses of Gauge Bosons,'' Phys. Rev. Lett. 13 (1964) 508-9. MR 0175554 (30:5738)
  • 13. G. Moore and E. Witten, ``Integration over the $ u$-Plane in Donaldson Theory,'' Adv. Theor. Math. Phys. 1 (1998) 298-387. MR 1605636 (99k:57070)
  • 14. A. Salam and J. Ward, ``Electromagnetic and Weak Interactions,'' Phys. Lett. 13 (1964) 168-171. MR 0192825 (33:1050)
  • 15. A. Salam, ``Weak and Electromagnetic Interactions,'' in N. Svartholm, ed., Elementary Particle Physics (Almqvist and Wiksells, Stockholm, 1968), 367-377.
  • 16. J. Schwinger,``Gauge Invariance and Mass,'' Phys. Rev. 125 (1962) 397-8. MR 0154597 (27:4543)
  • 17. A. Scorpan, The Wild World of 4-Manifolds (American Mathematical Society, 2005). MR 2136212 (2006h:57018)
  • 18. N. Seiberg and E. Witten, ``Electric-Magnetic Duality, Monopole Condensation, and Confinement in $ {\mathcal N}=2$ Supersymmetric Yang-Mills Theory,'' Nucl. Phys. B426 (1994) 19-52. MR 1293681 (95m:81202a)
  • 19. C. Taubes, ``Arbitrary $ N$-Vortex Solutions to the First-Order Ginzburg-Landau Equations,'' Commun. Math. Phys. 72 (1980) 277-292. MR 573986 (83c:81124)
  • 20. C. Taubes, ``The Seiberg-Witten and Gromov Invariants,'' Math. Res. Lett. 2 (1995) 221-238. MR 1324704 (96a:57076)
  • 21. C. Taubes, Seiberg-Witten and Gromov Invariants for Symplectic 4-Manifolds (International Press, 2000). MR 1798809 (2002j:53115)
  • 22. S. Weinberg, ``A Model of Leptons,'' Phys. Rev. Lett. 19 (1967) 1264.
  • 23. S. Weinberg, The Quantum Theory of Fields, volumes 1 and 2 (Cambridge University Press, 1996).

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 81Q99, 53D45

Retrieve articles in all journals with MSC (2000): 81Q99, 53D45


Additional Information

Edward Witten
Affiliation: School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540
Email: witten@ias.edu

DOI: https://doi.org/10.1090/S0273-0979-07-01167-6
Keywords: Superconductors, weak interactions, four-manifolds
Received by editor(s): February 26, 2007
Published electronically: April 23, 2007
Additional Notes: Supported in part by NSF Grant PHY-0503584.
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society