Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Patrizia Pucci and James Serrin
Title: The maximum principle
Additional book information: Progress in Nonlinear Differential Equations and Their Applications, no. 73, Birkhäuser Verlag, Basel, no. 73, 2007, x+235 pp., ISBN 978-3-7643-8144-8, US $64.95

References [Enhancements On Off] (What's this?)

  • 1. H. Berestycki, L. Nirenberg, and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994), 47-92. MR 1258192 (95h:35053)
  • 2. L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics 128, Cambridge University Press, Cambridge, 2000. MR 1751289 (2001c:35042)
  • 3. D. Gilbarg, and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. MR 1814364 (2001k:35004)
  • 4. M. H. Protter, and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. MR 762825 (86f:35034)
  • 5. J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302. MR 0170096 (30:337)

Review Information:

Reviewer: Yehuda Pinchover
Affiliation: Technion - Israel Institute of Technology
Journal: Bull. Amer. Math. Soc. 46 (2009), 499-504
MSC (2000): Primary 35-02, 35B50, 35A05, 35B05, 35J15, 35J60, 35J70
Published electronically: March 16, 2009
Review copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
American Mathematical Society