Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Mathematical general relativity: A sampler


Authors: Piotr T. Chruściel, Gregory J. Galloway and Daniel Pollack
Journal: Bull. Amer. Math. Soc. 47 (2010), 567-638
MSC (2010): Primary 83-02
DOI: https://doi.org/10.1090/S0273-0979-2010-01304-5
Published electronically: July 30, 2010
MathSciNet review: 2721040
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide an introduction to selected recent advances in the mathematical understanding of Einstein's theory of gravitation.


References [Enhancements On Off] (What's this?)

  • 1. S. Alexakis, A.D. Ionescu, and S. Klainerman, Hawking's local rigidity theorem without analyticity, (2009), arXiv:0902.1173.
  • 2. P. Allen, A. Clausen, and J. Isenberg, Near-constant mean curvature solutions of the Einstein constraint equations with non-negative Yamabe metrics, Class. Quantum Grav. 25 (2008), 075009, 15 pp., arxiv:0710.0725v1[gr-qc]. MR 2404418 (2009a:83009)
  • 3. L. Andersson, The global existence problem in general relativity, The Einstein Equations and the Large Scale Behavior of Gravitational Fields (P.T. Chruściel and H. Friedrich, eds.), Birkhäuser, Basel, 2004, arXiv:gr-qc/9911032v4, pp. 71-120. MR 2098914 (2005k:58054)
  • 4. L. Andersson and P. Blue, Hidden symmetries and decay for the wave equation on the Kerr spacetime, (2009), arXiv:0908.2265 [math.AP].
  • 5. L. Andersson, M. Eichmair, and J. Metzger, Jang's equation and its applications to marginally trapped surfaces (2010), arXiv:1006.4601.
  • 6. L. Andersson, M. Mars, J. Metzger, and W. Simon, The time evolution of marginally trapped surfaces, Class. Quant. Grav. 26 (2009), 085018.
  • 7. L. Andersson, M. Mars, and W. Simon, Local existence of dynamical and trapping horizons, Phys. Rev. Lett. 95 (2005), 111102.
  • 8. -, Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes, Adv. Theor. Math. Phys. 12 (2008), 853-888. MR 2420905 (2010a:83005)
  • 9. L. Andersson and J. Metzger, Curvature estimates for stable marginally trapped surfaces, (2005), arXiv:gr-qc/0512106.
  • 10. -, The area of horizons and the trapped region, arXiv:0708.4252 [gr-qc]. Comm. Math. Phys. 290 (2009), 941-972. MR 2525646 (2010f:53118)
  • 11. L. Andersson and V. Moncrief, Einstein spaces as attractors for the Einstein flow, in preparation.
  • 12. -, Elliptic-hyperbolic systems and the Einstein equations, Ann. Henri Poincaré 4 (2003), 1-34, arXiv:gr-qc/0110111. MR 1967177 (2004c:58060)
  • 13. -, Future complete vacuum space-times, The Einstein Equations and the Large Scale Behavior of Gravitational Fields (P.T. Chruściel and H. Friedrich, eds.), Birkhäuser, Basel, 2004, pp. 299-330, arXiv:gr-qc/0303045. MR 2098919 (2006c:83004)
  • 14. L. Andersson and A.D. Rendall, Quiescent cosmological singularities, Commun. Math. Phys. 218 (2001), 479-511, arXiv:gr-qc/0001047. MR 2002h:83072
  • 15. R. Arnowitt, S. Deser, and C.W. Misner, The dynamics of general relativity, Gravitation: An introduction to current research, Wiley, New York, 1962, pp. 227-265. MR 0143629 (26:1182)
  • 16. A. Ashtekar and G.J. Galloway, Some uniqueness results for dynamical horizons, Adv. Theor. Math. Phys. 9 (2005), 1-30. MR 2193368 (2006k:83101)
  • 17. A. Ashtekar and B. Krishnan, Isolated and dynamical horizons and their applications, Living Rev. Rel. 7 (2004), gr-qc/0407042.
  • 18. J.D. Barrow and F.J. Tipler, Analysis of the generic singularity studies by Belinskiĭ, Khalatnikov, and Lifschitz, Phys. Rep. 56 (1979), 371-402. MR 555355 (83c:83005)
  • 19. R. Bartnik, The existence of maximal hypersurfaces in asymptotically flat space-times, Commun. Math. Phys. 94 (1984), 155-175. MR 761792 (86b:53063)
  • 20. -, The mass of an asymptotically flat manifold, Commun. Pure Appl. Math. 39 (1986), 661-693. MR 849427 (88b:58144)
  • 21. -, Regularity of variational maximal surfaces, Acta Math. 161 (1988), 145-181. MR 971795 (90b:58255)
  • 22. -, Remarks on cosmological spacetimes and constant mean curvature surfaces, Commun. Math. Phys. 117 (1988), 615-624. MR 953823 (89g:53094)
  • 23. -, Some open problems in mathematical relativity, Conference on Mathematical Relativity (Canberra, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 19, Austral. Nat. Univ., Canberra, 1989, pp. 244-268. MR 1020805 (90g:83001)
  • 24. -, Phase space for the Einstein equations, Commun. Anal. Geom. 13 (2005), 845-885, arXiv:gr-qc/0402070. MR 2216143 (2007d:83012)
  • 25. R. Bartnik, P.T. Chruściel, and N. Ó Murchadha, On maximal surfaces in asymptotically flat space-times., Commun. Math. Phys. 130 (1990), 95-109. MR 1055687 (91b:53078)
  • 26. R. Bartnik and J. Isenberg, The constraint equations, The Einstein equations and the large scale behavior of gravitational fields, Birkhäuser, Basel, 2004, pp. 1-38. MR 2098912 (2005j:83007)
  • 27. J.K. Beem, P.E. Ehrlich, and K.L. Easley, Global Lorentzian geometry, Second ed., Marcel Dekker Inc., New York, 1996. MR 1384756 (97f:53100)
  • 28. F. Béguin, Aperiodic oscillatory asymptotic behavior for some Bianchi spacetimes, (2010), arXiv:1004.2984 [gr-qc].
  • 29. R. Beig, TT-tensors and conformally flat structures on $ 3$-manifolds, Mathematics of Gravitation, Part I (Warsaw, 1996), Banach Center Publ., vol. 41, Polish Acad. Sci., Warsaw, 1997, pp. 109-118. MR 1466511 (98k:53040)
  • 30. R. Beig and P.T. Chruściel, Killing Initial Data, Class. Quantum. Grav. 14 (1997), A83-A92, A special issue in honour of Andrzej Trautman on the occasion of his 64th Birthday, J.Tafel, editor. MR 1691888 (2000c:83011)
  • 31. -, Killing vectors in asymptotically flat space-times: I. Asymptotically translational Killing vectors and the rigid positive energy theorem, Jour. Math. Phys. 37 (1996), 1939-1961, arXiv:gr-qc/9510015. MR 1380882 (97d:83033)
  • 32. -, The asymptotics of stationary electro-vacuum metrics in odd space-time dimensions, Class. Quantum Grav. 24 (2007), 867-874. MR 2297271
  • 33. R. Beig, P.T. Chruściel, and R. Schoen, KIDs are non-generic, Ann. Henri Poincaré 6 (2005), 155-194, arXiv:gr-qc/0403042. MR 2121280 (2005m:83013)
  • 34. R. Beig and N. Ó Murchadha, Vacuum spacetimes with future trapped surfaces, Class. Quantum Grav. 13 (1996), 739-751. MR 1383704 (97e:83005)
  • 35. V.A. Belinski, I.M. Khalatnikov, and E.M. Lifshtitz, Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys. 19 (1970), 525-573.
  • 36. B. Berger, P.T. Chruściel, J. Isenberg, and V. Moncrief, Global foliations of vacuum space-times with $ T^2$ isometry, Ann. Phys. (NY) 260 (1997), 117-148. MR 1474313 (98j:83005)
  • 37. B. Berger, J. Isenberg, and M. Weaver, Oscillatory approach to the singularity in vacuum space-times with $ T^2$ isometry, Phys. Rev. D64 (2001), 084006, arXiv:gr-qc/0104048, erratum-ibid. D67, 129901 (2003).
  • 38. B.K. Berger, Hunting local mixmaster dynamics in spatially inhomogeneous cosmologies, Class. Quantum Grav. 21 (2004), S81-S95, A space-time safari: Essays in honour of Vincent Moncrief. MR 2053000 (2005f:83066)
  • 39. B.K. Berger, D. Garfinkle, J. Isenberg, V. Moncrief, and M. Weaver, The singularity in generic gravitational collapse is spacelike, local, and oscillatory, Mod. Phys. Lett. A13 (1998), 1565-1574, arXiv:gr-qc/9805063. MR 1633408 (99j:83052)
  • 40. B.K. Berger and V. Moncrief, Exact $ {U}(1)$ symmetric cosmologies with local Mixmaster dynamics, Phys. Rev. D62 (2000), 023509, arXiv:gr-qc/0001083. MR 1790740 (2001f:83027)
  • 41. -, Signature for local mixmaster dynamics in $ U(1)$ symmetric cosmologies, Phys. Rev. D 62 (2000), 123501, 9, arXiv:gr-qc/0006071. MR 1813870 (2001k:83027)
  • 42. A.N. Bernal and M. Sánchez, Smoothness of time functions and the metric splitting of globally hyperbolic space-times, Commun. Math. Phys. 257 (2005), 43-50. MR 2163568 (2006g:53105)
  • 43. A.L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 10, Springer Verlag, Berlin, New York, Heidelberg, 1987. MR 867684 (88f:53087)
  • 44. L. Bieri and N. Zipser, Extensions of the stability theorem of the Minkowski space in general relativity. AMS/IP Studies in Advanced Mathematics, vol. 45, Amer. Math. Soc., Providence, RI, 2009. MR 2531716
  • 45. G. D. Birkhoff, Relativity and modern physics, Harvard University Press, 1923.
  • 46. P. Blue, Decay of the Maxwell field on the Schwarzschild manifold, arXiv:0710.4102 [math.AP]. J. Hyperbolic Differ. Equ. 5 (2008), 807-856. MR 2475482 (2010d:35371)
  • 47. P. Blue and J. Sterbenz, Uniform decay of local energy and the semi-linear wave equation on Schwarzchild space, arXiv:math.AP/0510315. Comm. Math. Phys. 268 (2006), 481-504. MR 2259204 (2007i:58037)
  • 48. H.L. Bray, Proof of the Riemannian Penrose inequality using the positive mass theorem, Jour. Diff. Geom. 59 (2001), 177-267. MR 1908823 (2004j:53046)
  • 49. -, Black holes and the Penrose inequality in general relativity, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, 2002, pp. 257-271. MR 1957038 (2004b:83056)
  • 50. -, Black holes, geometric flows, and the Penrose inequality in general relativity, Notices Amer. Math. Soc. 49 (2002), 1372-1381. MR 1936643 (2003j:83052)
  • 51. H.L. Bray and P.T. Chruściel, The Penrose inequality, The Einstein Equations and the Large Scale Behavior of Gravitational Fields (P.T. Chruściel and H. Friedrich, eds.), Birkhäuser, Basel, 2004, pp. 39-70, arXiv:gr-qc/0312047. MR 2098913 (2005m:83014)
  • 52. H.L. Bray and M.A. Khuri, A Jang Equation Approach to the Penrose Inequality, (2009), arXiv:0910.4785 [math.DG].
  • 53. -, PDE's which imply the Penrose conjecture, (2009), arXiv:0905.2622 [math.DG].
  • 54. H.L. Bray and D.A. Lee, On the Riemannian Penrose inequality in dimensions less than eight, Duke Math. Jour. 148 (2009), 81-106, arXiv:0705.1128. MR 2515101
  • 55. H.L. Bray and P. Miao, On the capacity of surfaces in manifolds with nonnegative scalar curvature, Invent. Math. 172 (2008), 459-475. MR 2393076
  • 56. H.L. Bray and R. Schoen, Recent proofs of the Riemannian Penrose conjecture, Current Developments in Mathematics, 1999 (Cambridge, MA), Int. Press, Somerville, MA, 1999, pp. 1-36. MR 1990246 (2004j:53047)
  • 57. Hubert Bray, Sean Hayward, Marc Mars, and Walter Simon, Generalized inverse mean curvature flows in spacetime, Commun. Math. Phys. 272 (2007), 119-138, arXiv:gr-qc/0603014. MR 2291804 (2008c:53065)
  • 58. P. Breitenlohner, D. Maison, and G. Gibbons, $ 4$-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys. 120 (1988), 295-333. MR 973537 (89j:83018)
  • 59. R. Brout, S. Massar, R. Parentani, and P. Spindel, A primer for black hole quantum physics, Phys. Rept. 260 (1995), 329-454. MR 1353182 (97g:83064)
  • 60. R. Budic, J. Isenberg, L. Lindblom, and P. Yasskin, On the determination of the Cauchy surfaces from intrinsic properties, Commun. Math. Phys. 61 (1978), 87-95. MR 0489695 (58:9089)
  • 61. M. Cai, Volume minimizing hypersurfaces in manifolds of nonnegative scalar curvature, Minimal Surfaces, Geometric Analysis and Symplectic Geometry (Baltimore, MD, 1999), Adv. Stud. Pure Math., vol. 34, Math. Soc. Japan, Tokyo, 2002, pp. 1-7. MR 1925731 (2003f:53104)
  • 62. M. Cai and G.J. Galloway, Rigidity of area minimizing tori in $ 3$-manifolds of nonnegative scalar curvature, Commun. Anal. Geom. 8 (2000), 565-573. MR 1775139 (2001j:53051)
  • 63. E. Calabi, On Ricci curvature and geodesics, Duke Math. J. 34 (1967), 667-676. MR 0216429 (35:7262)
  • 64. A. Carrasco and M. Mars, A counter-example to a recent version of the Penrose conjecture, (2009), arXiv:0911.0883 [gr-qc].
  • 65. B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev. 174 (1968), 1559-1571.
  • 66. -, Black hole equilibrium states, Black Holes (C. de Witt and B. de Witt, eds.), Gordon & Breach, New York, London, Paris, 1973, Proceedings of the Les Houches Summer School. MR 0465047 (57:4960)
  • 67. M. Chae and P.T. Chruściel, On the dynamics of Gowdy space times, Commun. Pure Appl. Math. 57 (2004), 1015-1074, arXiv:gr-qc/0305029. MR 2053758 (2005i:83085)
  • 68. Y. Choquet-Bruhat, Positive-energy theorems, Relativity, groups and topology, II (Les Houches, 1983) (B.S. deWitt and R. Stora, eds.), North-Holland, Amsterdam, 1984, pp. 739-785. MR 830248 (87g:83054)
  • 69. -, Einstein constraints on compact $ n$-dimensional manifolds, Class. Quantum Grav. 21 (2004), S127-S151, arXiv:gr-qc/0311029. MR 2053003 (2005g:83011)
  • 70. -, Future complete $ U(1)$ symmetric Einsteinian space-times, the unpolarized case, The Einstein Equations and the Large Scale Behavior of Gravitational Fields (P.T. Chruściel and H. Friedrich, eds.), Birkhäuser, Basel, 2004, pp. 251-298. MR 2098918 (2006b:83015)
  • 71. -, General relativity and the Einstein equations, Oxford University Press, Oxford, UK, 2009. MR 2473363
  • 72. Y. Choquet-Bruhat and D. Christodoulou, Elliptic systems in $ H\sb{s,\delta }$ spaces on manifolds which are Euclidean at infinity, Acta Math. 146 (1981), 129-150. MR 594629 (82c:58060)
  • 73. Y. Choquet-Bruhat, P.T. Chruściel, and J. Loizelet, Global solutions of the Einstein-Maxwell equations in higher dimension, Class. Quantum Grav. (2006), 7383-7394, arXiv:gr-qc/0608108. MR 2279722 (2008i:83022)
  • 74. Y. Choquet-Bruhat, P.T. Chruściel, and J.M. Martín-García, The light-cone theorem, Class. Quantum Grav. 26 (2009), 135011 (22 pp.), arXiv:0905.2133 [gr-qc]. MR 2515694
  • 75. Y. Choquet-Bruhat and R. Geroch, Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys. 14 (1969), 329-335. MR 0250640 (40:3872)
  • 76. Y. Choquet-Bruhat, J. Isenberg, and V. Moncrief, Solutions of constraints for Einstein equations, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 349-355. MR 1179734 (93h:58151)
  • 77. Y. Choquet-Bruhat, J. Isenberg, and D. Pollack, The Einstein-scalar field constraints on asymptotically Euclidean manifolds, Chinese Ann. Math. Ser. B 27 (2006), 31-52, arXiv:gr-qc/0506101. MR 2209950 (2007h:58049)
  • 78. -, Applications of theorems of Jean Leray to the Einstein-scalar field equations, Jour. Fixed Point Theory Appl. 1 (2007), 31-46, arXiv:gr-qc/0611009. MR 2282342
  • 79. -, The constraint equations for the Einstein-scalar field system on compact manifolds, Class. Quantum Grav. 24 (2007), 809-828, arXiv:gr-qc/0610045. MR 2297268
  • 80. Y. Choquet-Bruhat and V. Moncrief, Future global in time Einsteinian space-times with $ U(1)$ isometry group., Ann. Henri Poincaré 2 (2001), 1007-1064. MR 1877233 (2003g:53123)
  • 81. Y. Choquet-Bruhat and J. York, The Cauchy problem, General Relativity (A. Held, ed.), Plenum Press, New York, 1980, pp. 99-172. MR 583716 (82k:58028)
  • 82. D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math. 39 (1986), 267-282. MR 820070 (87c:35111)
  • 83. -, The problem of a self-gravitating scalar field, Commun. Math. Phys. 105 (1986), 337-361. MR 848643 (87i:83009)
  • 84. -, Examples of naked singularity formation in the gravitational collapse of a scalar field, Ann. of Math. (2) 140 (1994), 607-653. MR 1307898 (95j:83100)
  • 85. -, The instability of naked singularities in the gravitational collapse of a scalar field, Ann. of Math. (2) 149 (1999), 183-217. MR 1680551 (2000a:83086)
  • 86. -, On the global initial value problem and the issue of singularities, Class. Quantum Grav. 16 (1999), A23-A35. MR 1728432 (2001a:83010)
  • 87. -, The Formation of Black Holes in General Relativity, arXiv:0805.3880 [gr-qc]. European Mathematical Society, Zurich, 2009. MR 2488976 (2009k:83010)
  • 88. D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space, Princeton University Press, 1993. MR 1316662 (95k:83006)
  • 89. D. Christodoulou and N. Ó Murchadha, The boost problem in general relativity, Commun. Math. Phys. 80 (1981), 271-300. MR 623161 (84e:83011)
  • 90. D. Christodoulou and A. Shadi Tahvildar-Zadeh, On the asymptotic behavior of spherically symmetric wave maps, Duke Math. Jour. 71 (1993), 31-69. MR 1230285 (94j:58044)
  • 91. -, On the regularity of spherically symmetric wave maps, Commun. Pure Appl. Math. 46 (1993), 1041-1091. MR 1223662 (94e:58030)
  • 92. P.T. Chruściel, Boundary conditions at spatial infinity from a Hamiltonian point of view, Topological Properties and Global Structure of Space-Time (P. Bergmann and V. de Sabbata, eds.), Plenum Press, New York, 1986, pp. 49-59, URL http://www.phys.univ-tours.fr/~piotr/scans.
  • 93. -, On space-times with $ {\rm U}(1)\times {\rm U}(1)$ symmetric compact Cauchy surfaces, Ann. Phys. 202 (1990), 100-150. MR 1067565 (91h:83007)
  • 94. -, On uniqueness in the large of solutions of Einstein equations (``strong cosmic censorship''), Contemp. Math. 132 (1992), 235-273. MR 1188443 (93g:83078)
  • 95. -, On completeness of orbits of Killing vector fields, Class. Quantum Grav. 10 (1993), 2091-2101, arXiv:gr-qc/9304029. MR 1242398 (94i:53063)
  • 96. -, Beijing lecture notes on mathematical relativity, www.phys.univ-tours.fr/~piotr/papers/BeijingAll.pdf, 2006.
  • 97. P.T. Chruściel and J. Cortier, On the geometry of Emparan-Reall black rings, (2008), arXiv:0807.2309 [gr-qc].
  • 98. P.T. Chruściel, J. Cortier, and A. Garcia-Parrado, On the global structure of the Pomeransky-Senkov black holes, (2009), arXiv:0911.0802 [gr-qc].
  • 99. P.T. Chruściel and J. Lopes Costa, On uniqueness of stationary black holes, Astérisque No. 321 (2008), 195-265, arXiv:0806.0016v2 [gr-qc]. MR 2521649
  • 100. P.T. Chruściel and E. Delay, Existence of non-trivial, vacuum, asymptotically simple space-times, Class. Quantum Grav. 19 (2002), L71-L79, arXiv:gr-qc/0203053, erratum-ibid, 3389. MR 1902228 (2003e:83024a); MR1920322 (2003e:83024b)
  • 101. -, On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Mém. Soc. Math. de France. 94 (2003), vi+103, arXiv:gr-qc/0301073v2. MR 2031583 (2005f:83008)
  • 102. -, Manifold structures for sets of solutions of the general relativistic constraint equations, Jour. Geom. Phys. 51 (2004), 442-472, arXiv:gr-qc/0309001v2. MR 2085346 (2005i:83008)
  • 103. P.T. Chruściel, E. Delay, G. Galloway, and R. Howard, Regularity of horizons and the area theorem, Ann. Henri Poincaré 2 (2001), 109-178, arXiv:gr-qc/0001003. MR 1823836 (2002e:83045)
  • 104. P.T. Chruściel, J. Isenberg, and V. Moncrief, Strong cosmic censorship in polarised Gowdy space-times, Class. Quantum Grav. 7 (1990), 1671-1680. MR 1075858 (91i:83042)
  • 105. P.T. Chruściel, J. Isenberg, and D. Pollack, Gluing initial data sets for general relativity, Phys. Rev. Lett. 93 (2004), 081101, arXiv:gr-qc/0409047.
  • 106. -, Initial data engineering, Commun. Math. Phys. 257 (2005), 29-42, arXiv:gr-qc/0403066. MR 2163567 (2007d:83013)
  • 107. P.T. Chruściel and K. Lake, Cauchy horizons in Gowdy space times, Class. Quantum Grav. 21 (2004), S153-S170, arXiv:gr-qc/0307088. MR 2053004 (2005d:83092)
  • 108. P.T. Chruściel and D. Maerten, Killing vectors in asymptotically flat space-times: II. Asymptotically translational Killing vectors and the rigid positive energy theorem in higher dimensions, Jour. Math. Phys. 47 (2006), 022502, 10 pp., arXiv:gr-qc/0512042. MR 2208148 (2007b:83054)
  • 109. P.T. Chruściel and L. Nguyen, A uniqueness theorem for degenerate Kerr-Newman black holes, (2010), arXiv:1002.1737 [gr-qc].
  • 110. P.T. Chruściel, H.S. Reall, and K.P. Tod, On non-existence of static vacuum black holes with degenerate components of the event horizon, Class. Quantum Grav. 23 (2006), 549-554, arXiv:gr-qc/0512041. MR 2196372 (2007b:83090)
  • 111. P.T. Chruściel and A. Rendall, Strong cosmic censorship in vacuum space-times with compact, locally homogeneous Cauchy surfaces, Ann. Physics 242 (1995), 349-385. MR 1349391 (96f:83085)
  • 112. N.J. Cornish and J.J. Levin, The mixmaster universe: A chaotic Farey tale, Phys. Rev. D55 (1997), 7489-7510, arXiv:gr-qc/9612066.
  • 113. J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys. 214 (2000), 137-189. MR 1794269 (2002b:53050)
  • 114. -, On the existence and stability of the Penrose compactification, Ann. Henri Poincaré 8 (2007), 597-620. MR 2329363 (2008e:53050)
  • 115. J. Corvino and R.M. Schoen, On the asymptotics for the vacuum Einstein constraint equations, Jour. Diff. Geom. 73 (2006), 185-217, arXiv:gr-qc/0301071. MR 2225517 (2007e:58044)
  • 116. M. Dafermos, Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-Maxwell-scalar field equations, Ann. of Math. (2) 158 (2003), 875-928. MR 2031855 (2005f:83009)
  • 117. -, The interior of charged black holes and the problem of uniqueness in general relativity, Commun. Pure Appl. Math. 58 (2005), 445-504, arXiv:gr-qc/0307013. MR 2119866 (2006e:83087)
  • 118. M. Dafermos and I. Rodnianski, A proof of Price's law for the collapse of a self-gravitating scalar field, Invent. Math. 162 (2005), 381-457, arXiv:gr-qc/0309115. MR 2199010 (2006i:83016)
  • 119. -, A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, (2008), arXiv:0805.4309 [gr-qc].
  • 120. -, Lectures on black holes and linear waves, (2008), arXiv:0811.0354 [gr-qc].
  • 121. -, The red-shift effect and radiation decay on black hole spacetimes, Commun. Pure Appl. Math. 62 (2009), 859-919. MR 2527808
  • 122. S. Dain, Trapped surfaces as boundaries for the constraint equations, Class. Quantum Grav. 21 (2004), 555-574, Corrigendum ib. 22 (2005), p. 769; arXiv:gr-qc/0308009. MR 2030884 (2004m:83060); MR2118199 (2005j:83076)
  • 123. S. Dain and H. Friedrich, Asymptotically flat initial data with prescribed regularity at infinity, Commun. Math. Phys. 222 (2001), no. 3, 569-609. MR 1888089 (2003f:58057)
  • 124. T. Damour, M. Henneaux, and H. Nicolai, Cosmological billiards, Class. Quantum Grav. 20 (2003), R145-R200. MR 1981434 (2004e:83124)
  • 125. T. Damour, M. Henneaux, A. D. Rendall, and M. Weaver, Kasner-like behaviour for subcritical Einstein-matter systems, Ann. Henri Poincaré 3 (2002), 1049-1111. MR 1957378 (2004g:83092)
  • 126. J. Demaret, J.-L. Hanquin, M. Henneaux, and P. Spindel, Nonoscillatory behaviour in vacuum Kaluza-Klein cosmologies, Phys. Lett. B 164 (1985), 27-30. MR 815631 (87e:83060)
  • 127. S.K. Donaldson, An application of gauge theory to four-dimensional topology, Jour. Diff. Geom. 18 (1983), 279-315. MR 710056 (85c:57015)
  • 128. R. Donninger, W. Schlag, and A. Soffer, A proof of Price's Law on Schwarzschild black hole manifolds for all angular momenta, (2009), arXiv:0908.4292 [gr-qc].
  • 129. D. Eardley, E. Liang, and R. Sachs, Velocity-dominated singularities in irrotational dust cosmologies, Jour. Math. Phys. 13 (1972), 99-106.
  • 130. M. Eichmair, Existence, regularity, and properties of generalized apparent horizons, arXiv:0805.4454 [math.DG]. Comm. Math. Phys. 294 (2010), 745-760. MR 2585986
  • 131. -, The plateau problem for apparent horizons, 2007, arXiv:0711.4139 [math.DG].
  • 132. R. Emparan, Rotating circular strings, and infinite non-uniqueness of black rings, J. High Energy Phys. 03 (2004), 064. MR 2061590 (2004m:83090)
  • 133. R. Emparan and H.S. Reall, A rotating black ring in five dimensions, Phys. Rev. Lett. 88 (2002), 101101, arXiv:hep-th/0110260. MR 1901280 (2003e:83060)
  • 134. -, Black rings, Class. Quantum Grav. 23 (2006), R169-R197, arXiv:hep-th/0608012. MR 2270099 (2008a:83100)
  • 135. -, Black holes in higher dimensions, Living Rev. Rel. 11 (2008), 6, arXiv:0801.3471 [hep-th].
  • 136. L.C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845 (99e:35001)
  • 137. H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969 (Die Grundlehren der mathematischen Wissenschaften, Vol. 153). MR 0257325 (41:1976)
  • 138. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Linear waves in the Kerr geometry: A mathematical voyage to black hole physics, Bull. Amer. Math. Soc. (N.S.) 46 (2009), 635-659, arXiv:0801.1423 [math-ph]. MR 2525736
  • 139. A.E. Fischer and J.E. Marsden, The initial value problem and the dynamical formulation of general relativity, Einstein Centenary Volume (Hawking and Israel, eds.), Cambridge University Press, Cambridge, 1979, pp. 138-211.
  • 140. Y. Fourès-Bruhat, Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires, Acta Math. 88 (1952), 141-225. MR 0053338 (14:756g)
  • 141. J. Frauendiener, On the Penrose inequality, Phys. Rev. Lett. 87 (2001), 101101, 4 pp., arXiv:gr-qc/0105093. MR 1854297 (2002f:83054)
  • 142. C. Fronsdal, Completion and embedding of the Schwarzschild solution, Phys. Rev. (2) 116 (1959), 778-781. MR 0110524 (22:1402)
  • 143. G.J. Galloway, Some results on Cauchy surface criteria in Lorentzian geometry, Illinois Jour. Math. 29 (1985), 1-10. MR 769754 (86c:53043)
  • 144. -, Rigidity of marginally trapped surfaces and the topology of black holes, Commun. Anal. Geom. 16 (2008), 217-229, gr-qc/0608118. MR 2411473 (2009e:53087)
  • 145. G.J. Galloway and R. Schoen, A generalization of Hawking's black hole topology theorem to higher dimensions, Comm. Math. Phys. 266 (2005), 571-576, arXiv:gr-qc/0509107. MR 2238889 (2007i:53078)
  • 146. R. Geroch, Domain of dependence, Jour. Math. Phys. 11 (1970), 437-449. MR 0270697 (42:5585)
  • 147. M. Gromov and H.B. Lawson, Jr., Spin and scalar curvature in the presence of a fundamental group. I, Ann. of Math. (2) 111 (1980), 209-230. MR 569070 (81g:53022)
  • 148. -, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. (1983), 83-196. MR 720933 (85g:58082)
  • 149. T. Harmark, Stationary and axisymmetric solutions of higher-dimensional general relativity, Phys. Rev. D (3) 70 (2004), 124002, 25, arXiv:hep-th/0408141. MR 2124693 (2005k:83136)
  • 150. T. Harmark and P. Olesen, Structure of stationary and axisymmetric metrics, Phys. Rev. D (3) 72 (2005), 124017, 12, hep-th/0408141. MR 2198031 (2007i:83042)
  • 151. S. W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. London Ser. A 314 (1970), 529-548. MR 0264959 (41:9548)
  • 152. S.W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972), 152-166. MR 0293962 (45:3037)
  • 153. -, The event horizon, Black holes/Les astres occlus (B.S. DeWitt, ed.), Gordon and Breach Science Publishers, 1973, pp. xii+552+176. MR 0408678 (53:12441)
  • 154. S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge, 1973, Cambridge Monographs on Mathematical Physics, No. 1. MR 0424186 (54:12154)
  • 155. E. Hebey, F. Pacard, and D. Pollack, A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Commun. Math. Phys. 278 (2008), no. 1, 117-132, arXiv:gr-qc/0702031. MR 2367200
  • 156. J.M. Heinzle, C. Uggla, and N. Röhr, The cosmological billiard attractor, arXiv:gr-qc/0702141. Adv. Theor. Math. Phys. 13 (2009), 293-407. MR 2481269
  • 157. M. Herzlich, A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds, Commun. Math. Phys. 188 (1997), 121-133. MR 1471334 (99a:53039)
  • 158. M. Heusler, Black hole uniqueness theorems, Cambridge University Press, Cambridge, 1996. MR 1446003 (98b:83057)
  • 159. C.G. Hewitt, J.T. Horwood, and J. Wainwright, Asymptotic dynamics of the exceptional Bianchi cosmologies, Class. Quantum Grav. 20 (2003), 1743-1756. MR 1981447 (2004g:83027)
  • 160. S. Hollands, A. Ishibashi, and R.M. Wald, A higher dimensional stationary rotating black hole must be axisymmetric, Commun. Math. Phys. 271 (2007), 699-722, arXiv:gr-qc/0605106. MR 2291793 (2008c:83031)
  • 161. S. Hollands and S. Yazadjiev, A Uniqueness theorem for $ 5$-dimensional Einstein-Maxwell black holes, Class. Quantum Grav. 25 (2008), 095010, arXiv:0711.1722 [gr-qc]. MR 2417776 (2009c:83061)
  • 162. -, A uniqueness theorem for stationary Kaluza-Klein black holes, (2008), arXiv:0812.3036 [gr-qc].
  • 163. -, Uniqueness theorem for $ 5$-dimensional black holes with two axial Killing fields, Commun. Math. Phys. 283 (2008), 749-768, arXiv:0707.2775 [gr-qc]. MR 2434746
  • 164. M. Holst, G. Nagy, and G. Tsogtgerel, Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions, Commun. Math. Phys. 288 (2009), 547-613. MR 2500992
  • 165. -, Far-from-constant mean curvature solutions of Einstein's constraint equations with positive Yamabe metrics, Phys. Rev. Lett. 100 (2008), 161101, 4 pp. MR 2403263 (2009c:53112)
  • 166. L. Hörmander, On the fully nonlinear Cauchy problem with small data. II, Microlocal analysis and nonlinear waves (Minneapolis, MN, 1988-1989), IMA Vol. Math. Appl., vol. 30, Springer, New York, 1991, pp. 51-81. MR 1120284 (94c:35127)
  • 167. G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, Jour. Diff. Geom. 59 (2001), 353-437. MR 1916951 (2003h:53091)
  • 168. A.D. Ionescu and S. Klainerman, On the uniqueness of smooth, stationary black holes in vacuum, arXiv:0711.0040 [gr-qc]. Invent. Math. 175 (2009), 35-102. MR 2461426 (2009j:83053)
  • 169. J. Isenberg, Constant mean curvature solutions of the Einstein constraint equations on closed manifolds, Class. Quantum Grav. 12 (1995), 2249-2274. MR 1353772 (97a:83013)
  • 170. J. Isenberg, D. Maxwell, and D. Pollack, Gluing of non-vacuum solutions of the Einstein constraint equations, Adv. Theor. Math. Phys. 9 (2005), 129-172. MR 2193370 (2006j:83004)
  • 171. J. Isenberg, R. Mazzeo, and D. Pollack, Gluing and wormholes for the Einstein constraint equations, Commun. Math. Phys. 231 (2002), 529-568, arXiv:gr-qc/0109045. MR 1946448 (2004a:83006)
  • 172. -, On the topology of vacuum spacetimes, Ann. Henri Poincaré 4 (2003), 369-383. MR 1985777 (2004h:53053)
  • 173. J. Isenberg and V. Moncrief, Symmetries of cosmological Cauchy horizons with exceptional orbits, Jour. Math. Phys. 26 (1985), 1024-1027. MR 787349 (86k:83023)
  • 174. -, Some results on nonconstant mean curvature solutions of the Einstein constraint equations, Physics on Manifolds (M. Flato, R. Kerner, and A. Lichnerowicz, eds.). Mathematical Physics Studies, 15, Kluwer Academic Publishers, Dordrecht, 1994, Y. Choquet-Bruhat Festschrift, pp. 295-302. MR 1267081 (95h:58133)
  • 175. -, A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds, Class. Quantum Gravity 13 (1996), 1819-1847. MR 1400943 (97h:83010)
  • 176. -, Asymptotic behavior of polarized and half-polarized $ U(1)$ symmetric vacuum spacetimes, Class. Quantum Grav. 19 (2002), 5361-5386, arXiv:gr-qc/0203042. MR 1939922 (2003h:83035)
  • 177. -, Symmetries of higher dimensional black holes, Class. Quantum Grav. 25 (2008), 195015, arXiv:0805.1451. MR 2438980 (2009g:83081)
  • 178. J. Isenberg and N. Ó Murchadha, Non-CMC conformal data sets which do not produce solutions of the Einstein constraint equations, Class. Quantum Grav. 21 (2004), S233-S241, A space-time safari: Essays in honour of Vincent Moncrief; arXiv:gr-qc/0311057. MR 2053007 (2005c:83003)
  • 179. J. Isenberg and M. Weaver, On the area of the symmetry orbits in $ T^2$ symmetric space-times, Class. Quantum Grav. 20 (2003), 3783-3796, arXiv:gr-qc/0304019. MR 2001695 (2004f:83049)
  • 180. P. S. Jang, On the positivity of energy in general relativity, J. Math. Phys. 19 (1978), 1152-1155. MR 488515 (80b:83012a)
  • 181. B.S. Kay and R.M. Wald, Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasi-free states on space-times with a bifurcate horizon, Phys. Rep. 207 (1991), 49-136. MR 1133130 (93b:81189)
  • 182. S. Kichenassamy and A. Rendall, Analytic description of singularities in Gowdy space-times, Class. Quantum Grav. 15 (1998), 1339-1355. MR 1623091 (99d:83077)
  • 183. S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Commun. Pure Appl. Math. 38 (1985), 321-332. MR 784477 (86i:35091)
  • 184. -, The null condition and global existence to nonlinear wave equations, Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, N.M., 1984), Lectures in Appl. Math., vol. 23, Amer. Math. Soc., Providence, RI, 1986, pp. 293-326. MR 837683 (87h:35217)
  • 185. S. Klainerman and F. Nicolò, On local and global aspects of the Cauchy problem in general relativity, Class. Quantum Grav. 16 (1999), R73-R157. MR 1709123 (2000h:83006)
  • 186. -, The evolution problem in general relativity, Progress in Mathematical Physics, vol. 25, Birkhäuser, Boston, MA, 2003. MR 1946854 (2004f:58036)
  • 187. -, Peeling properties of asymptotically flat solutions to the Einstein vacuum equations, Class. Quantum Grav. 20 (2003), 3215-3257. MR 1992002 (2005b:83038a)
  • 188. S. Klainerman and I. Rodnianski, Ricci defects of microlocalized Einstein metrics, Jour. Hyperbolic Differ. Equ. 1 (2004), 85-113. MR 2052472 (2005f:58048)
  • 189. -, The causal structure of microlocalized rough Einstein metrics, Ann. of Math. (2) 161 (2005), 1195-1243. MR 2180401 (2007d:58052)
  • 190. -, Rough solutions of the Einstein-vacuum equations, Ann. of Math. (2) 161 (2005), 1143-1193. MR 2180400 (2007d:58051)
  • 191. -, On emerging scarred surfaces for the Einstein vacuum equations, (2010), arXiv:1002.2656 [gr-qc].
  • 192. M.D. Kruskal, Maximal extension of Schwarzschild metric, Phys. Rev. (2) 119 (1960), 1743-1745. MR 0115757 (22:6555)
  • 193. J.M. Lee and T.H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), 37-91. MR 888880 (88f:53001)
  • 194. J. Leray, Hyperbolic differential equations, The Institute for Advanced Study, Princeton, NJ, 1953. MR 0063548 (16:139a)
  • 195. T.-T. Li and Y.M Chen, Global classical solutions for nonlinear evolution equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 45, Longman Scientific & Technical, Harlow, 1992. MR 1172318 (93g:35002)
  • 196. Y. Li and G. Tian, Nonexistence of axially symmetric, stationary solution of Einstein vacuum equation with disconnected symmetric event horizon, Manuscripta Math. 73 (1991), 83-89. MR 1124312 (92m:83022)
  • 197. A. Lichnerowicz, L'intégration des équations de la gravitation relativiste et le problème des $ n$ corps, Jour. Math. Pures Appl. (9) 23 (1944), 37-63. MR 0014298 (7:266d)
  • 198. A. Lichnerowicz, Spineurs harmoniques, C.R. Acad. Sci. Paris Sér. A-B 257 (1963), 7-9. MR 0156292 (27:6218)
  • 199. S. Liebscher, J. Harterich, K. Webster, and M. Georgi, Ancient Dynamics in Bianchi Models: Approach to Periodic Cycles, (2010), arXiv:1004.1989 [gr-qc].
  • 200. H. Lindblad and I. Rodnianski, The global stability of the Minkowski space-time in harmonic gauge, (2004), arXiv:math.ap/0411109.
  • 201. -, Global existence for the Einstein vacuum equations in wave coordinates, Commun. Math. Phys. 256 (2005), 43-110, arXiv:math.ap/0312479. MR 2134337 (2006b:83020)
  • 202. R.B. Lockhart, Fredholm properties of a class of elliptic operators on noncompact manifolds, Duke Math. J. 48 (1981), 289-312. MR 610188 (82j:35050)
  • 203. R.B. Lockhart and R.C. McOwen, On elliptic systems in $ {\bf R}\sp{n}$, Acta Math. 150 (1983), 125-135. MR 697610 (84d:35048)
  • 204. -, Correction to: ``On elliptic systems in $ {\bf R}\sp n$'' [Acta Math. 150 (1983), no. 1-2, 125-135], Acta Math. 153 (1984), 303-304. MR 766267 (86a:35049)
  • 205. -, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 409-447. MR 837256 (87k:58266)
  • 206. J. Loizelet, Solutions globales des équations d'Einstein-Maxwell en jauge harmonique et jauge de Lorenz, C. R. Acad. Sci. Sér. I 342 (2006), 479-482. MR 2214599 (2007f:83026)
  • 207. -, Problèmes globaux en relativité générale, Ph.D. thesis, Université de Tours, 2008, www.phys.univ-tours.fr/~piotr/papers/TheseTitreComplet.pdf.
  • 208. E. Malec, Isoperimetric inequalities in the physics of black holes, Acta Phys. Polon. B 22 (1991), 829-858. MR 1151689 (93e:83046)
  • 209. E. Malec, M. Mars, and W. Simon, On the Penrose inequality for general horizons, Phys. Rev. Lett. 88 (2002), 121102, arXiv:gr-qc/0201024. MR 1901724 (2003d:83029)
  • 210. J. Marzuola, J. Metcalfe, D. Tataru, and M. Tohaneanu, Strichartz estimates on Schwarzschild black hole backgrounds, arXiv:0802.3942v2 [math.AP]. Comm. Math. Phys. 293 (2010), 37-83. MR 2563798
  • 211. D. Maxwell, A model problem for conformal parameterizations of the Einstein constraint equations, (2009), arXiv:0909.5674 [gr-qc].
  • 212. -, A class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature, arXiv:0804.0874v1 [gr-qc]. Math. Res. Lett. 16 (2009), 627-645. MR 2525029
  • 213. -, Rough solutions of the Einstein constraint equations on compact manifolds, Jour. Hyperbolic Diff. Equ. 2 (2005), 521-546, arXiv:gr-qc/0506085. MR 2151120 (2006d:58027)
  • 214. -, Solutions of the Einstein constraint equations with apparent horizon boundaries, Commun. Math. Phys. 253 (2005), 561-583, arXiv:gr-qc/0307117. MR 2116728 (2006c:83008)
  • 215. R.C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces, Commun. Pure Appl. Math. 32 (1979), 783-795. MR 539158 (81m:47069)
  • 216. -, Fredholm theory of partial differential equations on complete Riemannian manifolds, Pacific J. Math. 87 (1980), 169-185. MR 590874 (82g:58082)
  • 217. -, On elliptic operators in $ {\bf R}\sp{n}$, Commun. Partial Differential Equations 5 (1980), 913-933. MR 584101 (81k:35058)
  • 218. P. Miao, Y. Shi, and L.-F. Tam, On geometric problems related to Brown-York and Liu-Yau quasilocal mass, 2009, arXiv.org:0906.5451 [math.DG].
  • 219. V. Moncrief, Spacetime symmetries and linearization stability of the Einstein equations. I, Jour. Mathematical Phys. 16 (1975), 493-498. MR 0363398 (50:15836)
  • 220. -, Global properties of Gowdy spacetimes with $ T^3\times{\mathbb{R}}$ topology, Ann. Phys. 132 (1981), 87-107. MR 615961 (83e:83007)
  • 221. -, Infinite-dimensional family of vacuum cosmological models with Taub-NUT (Newman-Unti-Tamburino)-type extensions, Phys. Rev. D 23 (1981), 312-315. MR 82b:83024
  • 222. V. Moncrief and D. Eardley, The global existence problem and cosmic censorship in general relativity, Gen. Rel. Grav. 13 (1981), 887-892. MR 640355 (83b:83006)
  • 223. V. Moncrief and J. Isenberg, Symmetries of cosmological Cauchy horizons, Commun. Math. Phys. 89 (1983), 387-413. MR 709474 (85c:83026)
  • 224. Y. Morisawa and D. Ida, A boundary value problem for the five-dimensional stationary rotating black holes, Phys. Rev. D69 (2004), 124005, arXiv:gr-qc/0401100. MR 2095953 (2005d:83079)
  • 225. R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Ann. Phys. 172 (1986), 304-347. MR 868295 (88a:83074)
  • 226. G. Neugebauer and J. Hennig, Non-existence of stationary two-black-hole configurations, Gen. Relativity Gravitation 41 (2009), no. 9, 2113-2130. MR 2534657
  • 227. G. Neugebauer and R. Meinel, Progress in relativistic gravitational theory using the inverse scattering method, Jour. Math. Phys. 44 (2003), 3407-3429, arXiv:gr-qc/0304086. MR 2006757 (2004k:83056)
  • 228. E. Newman, L. Tamburino, and T. Unti, Empty-space generalization of the Schwarzschild metric, Jour. Math. Phys. 4 (1963), 915-923. MR 0152345 (27:2325)
  • 229. J.-P. Nicolas, Dirac fields on asymptotically flat space-times, Dissertationes Math. (Rozprawy Mat.) 408 (2002), 1-85. MR 1952742 (2004c:83068)
  • 230. L. Nirenberg and H.F. Walker, The null spaces of elliptic partial differential operators in $ {\bf R}\sp{n}$, J. Math. Anal. Appl. 42 (1973), 271-301, Collection of articles dedicated to Salomon Bochner. MR 0320821 (47:9354)
  • 231. N. Ó Murchadha and J.W. York, Jr., Existence and uniqueness of solutions of the Hamiltonian constraint of general relativity on compact manifolds, Jour. Mathematical Phys. 14 (1973), 1551-1557. MR 0332094 (48:10421)
  • 232. B. O'Neill, Semi-Riemannian geometry, Academic Press, New York, 1983. MR 0719023 (85f:53002)
  • 233. -, The geometry of Kerr black holes, A.K. Peters, Wellesley, Mass., 1995. MR 1328643 (96c:83052)
  • 234. J. R. Oppenheimer and H. Snyder, On continued gravitational contraction, Phys. Rev. 56 (1939), 455-459.
  • 235. F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices, The Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, 39, Birkhäuser Boston Inc., Boston, MA, 2000. MR 1763040 (2001k:35066)
  • 236. T. Parker and C.H. Taubes, On Witten's proof of the positive energy theorem, Commun. Math. Phys. 84 (1982), 223-238. MR 661134 (83m:83020)
  • 237. R. Penrose, Asymptotic properties of fields and space-times, Phys. Rev. Lett. 10 (1963), 66-68. MR 0149912 (26:7397)
  • 238. -, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14 (1965), 57-59. MR 0172678 (30:2897)
  • 239. -, Gravitational collapse--the role of general relativity, Riv. del Nuovo Cim. (numero speziale) 1 (1969), 252-276.
  • 240. F. Planchon and I. Rodnianski, On uniqueness for the Cauchy problem in general relativity, (2007), in preparation.
  • 241. A.A. Pomeransky and R.A. Sen'kov, Black ring with two angular momenta, (2006), hep-th/0612005.
  • 242. A.D. Rendall, Existence of constant mean curvature foliations in space-times with two-dimensional local symmetry, Comm. Math. Phys. 189 (1997), 145-164, arXiv:gr-qc/9605022. MR 1478534 (99c:53075)
  • 243. -, Global dynamics of the mixmaster model, Class. Quantum Grav. 14 (1997), 2341-2356. MR 1468587 (98j:83024)
  • 244. -, Local and global existence theorems for the Einstein equations, Living Reviews in Relativity 1 (1998), URL http://www.livingreviews.org. MR 1711494 (2000g:58044)
  • 245. -, Fuchsian analysis of singularities in Gowdy space-times beyond analyticity, Class. Quantum Grav. 17 (2000), 3305-3316, arXiv:gr-qc/0004044. MR 1779512 (2002e:83066)
  • 246. M. Reiterer and E. Trubowitz, The BKL Conjectures for Spatially Homogeneous Spacetimes, (2010), arXiv:1005.4908 [gr-qc].
  • 247. A.D. Rendall and M. Weaver, Manufacture of Gowdy space-times with spikes, Class. Quantum Grav. 18 (2001), 2959-2975, arXiv:gr-qc/0103102. MR 1847897 (2002e:83010)
  • 248. H. Ringström, Curvature blow up in Bianchi VIII and IX vacuum space-times, Class. Quantum Grav. 17 (2000), 713-731, arXiv:gr-qc/9911115. MR 1744051 (2001d:83070)
  • 249. -, The Bianchi IX attractor, Ann. Henri Poincaré 2 (2001), 405-500, arXiv:gr-qc/0006035. MR 1846852 (2002h:83075)
  • 250. -, Existence of an asymptotic velocity and implications for the asymptotic behavior in the direction of the singularity in $ T\sp 3$-Gowdy, Commun. Pure Appl. Math. 59 (2006), 977-1041. MR 2222842
  • 251. -, Strong cosmic censorship in $ T^{3}$-Gowdy space-times, Ann. of Math. (2) 170 (2008), 1181-1240. MR MR2600872
  • 252. D.C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975), 905-906.
  • 253. R. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in Calculus of Variations (Montecatini Terme, 1987), Lecture Notes in Math., vol. 1365, Springer, Berlin, 1989, pp. 120-154. MR 994021 (90g:58023)
  • 254. -, Lecture at the Miami Waves Conference, January 2004.
  • 255. -, Mean curvature in Riemannian geometry and general relativity, Global Theory of Minimal Surfaces, Clay Math. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 2005, pp. 113-136. MR 2167257 (2006f:53044)
  • 256. R. Schoen and S.-T. Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), 127-142. MR 541332 (81k:58029)
  • 257. -, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 (1979), 45-76. MR 526976 (80j:83024)
  • 258. -, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), 159-183. MR 535700 (80k:53064)
  • 259. -, The energy and the linear momentum of space-times in general relativity, Commun. Math. Phys. 79 (1981), 47-51. MR 609227 (82j:83045)
  • 260. -, Proof of the positive mass theorem. II, Commun. Math. Phys. 79 (1981), 231-260. MR 612249 (83i:83045)
  • 261. -, The existence of a black hole due to the condensation of matter, Commun. Math. Phys. 90 (1983), 575-579. MR 719436 (84k:83005)
  • 262. -, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988), 47-71. MR 931204 (89c:58139)
  • 263. -, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. MR 1333601 (97d:53001)
  • 264. F. Schwartz, Existence of outermost apparent horizons with product of spheres topology, arXiv:0704.2403 [gr-qc]. Comm. Anal. Geom. 16 (2008), 799-817. MR 2471370 (2009m:53100)
  • 265. H.J. Seifert, Smoothing and extending cosmic time functions, Gen. Rel. Grav. 8 (1977), 815-831. MR 0484260 (58:4185)
  • 266. Y. Shi and L.-F. Tam, Quasi-local mass and the existence of horizons, Comm. Math. Phys. 274 (2007), 277-295, arXiv:math.DG/0511398. MR 2322904 (2008g:53095)
  • 267. H.F. Smith and D. Tataru, Sharp local well-posedness results for the nonlinear wave equation, Ann. of Math. (2) 162 (2005), 291-366. MR 2178963 (2006k:35193)
  • 268. D. Sudarsky and R.M. Wald, Extrema of mass, stationarity and staticity, and solutions to the Einstein-Yang-Mills equations, Phys. Rev. D46 (1993), 1453-1474. MR 1182084 (93k:83008)
  • 269. L. Szabados, Quasi-local energy-momentum and angular momentum in GR: A review article, Living Rev. 4 (2004), URL http://relativity.livingreviews.org/Articles/lrr-2004-4.
  • 270. Gy. Szekeres, On the singularities of a Riemannian manifold, Gen. Rel. Grav. 34 (2002), 2001-2016, Reprinted from Publ. Math. Debrecen 7 (1960), 285-301 MR 0125541 (23:A2842), MR 1945497 (2003j:83073a)
  • 271. D. Tataru, Local decay of waves on asymptotically flat stationary space-times, (2008), arXiv:0910.5290 [math.AP].
  • 272. D. Tataru and M. Tohaneanu, Local energy estimate on Kerr black hole backgrounds, (2008), arXiv:0810.5766 [math.AP].
  • 273. A.H. Taub, Empty space-times admitting a three parameter group of motions, Ann. of Math. (2) 53 (1951), 472-490. MR 0041565 (12:865b)
  • 274. C.M. Taubes, Self-dual Yang-Mills connections on non-self-dual $ 4$-manifolds, Jour. Diff. Geom. 17 (1982), 139-170. MR 658473 (83i:53055)
  • 275. C. Uggla, H. van Elst, J. Wainwright, and G.F.R. Ellis, The past attractor in inhomogeneous cosmology, Phys. Rev. D68 (2003), 103502 (22 pp.), arXiv:gr-qc/0304002.
  • 276. J. Wainwright and L. Hsu, A dynamical systems approach to Bianchi cosmologies: Orthogonal models of class $ A$, Class. Quantum Grav. 6 (1989), 1409-1431. MR 1014971 (90h:83033)
  • 277. R.M. Wald, General relativity, University of Chicago Press, Chicago, 1984. MR 757180 (86a:83001)
  • 278. M.-T. Wang and S.-T. Yau, A generalization of Liu-Yau's quasi-local mass, Commun. Anal. Geom. 15 (2007), 249-282. MR 2344323 (2008h:53046)
  • 279. -, Isometric embeddings into the Minkowski space and new quasi-local mass, Commun. Math. Phys. 288 (2009), no. 3, 919-942. MR 2504860 (2010d:53077)
  • 280. -, Quasilocal mass in general relativity, Phys. Rev. Lett. 102 (2009), no. 2, no. 021101, 4 pp. MR 2475769 (2010b:83015)
  • 281. G. Weinstein, On rotating black-holes in equilibrium in general relativity, Commun. Pure Appl. Math. XLIII (1990), 903-948. MR 1072397 (91h:83063)
  • 282. -, On the force between rotating coaxial black holes, Trans. Amer. Math. Soc. 343 (1994), 899-906. MR 1214787 (94h:83087)
  • 283. C. Williams, Asymptotic behavior of spherically symmetric marginally trapped tubes, Ann. Henri Poincaré 9 (2008) 1029-1067. arXiv:gr-qc/0702101. MR 2453255 (2009h:83095)
  • 284. D.M. Witt, Vacuum space-times that admit no maximal slice, Phys. Rev. Lett. 57 (1986), 1386-1389. MR 857257 (87h:83008)
  • 285. E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. 80 (1981), 381-402. MR 626707 (83e:83035)
  • 286. S.-T. Yau, Geometry of three manifolds and existence of black hole due to boundary effect, Adv. Theor. Math. Phys. 5 (2001), 755-767. MR 1926294 (2003j:53052)
  • 287. J.W. York, Jr., Covariant decompositions of symmetric tensors in the theory of gravitation, Ann. Inst. H. Poincaré Sect. A (N.S.) 21 (1974), 319-332. MR 0373548 (51:9748)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 83-02

Retrieve articles in all journals with MSC (2010): 83-02


Additional Information

Piotr T. Chruściel
Affiliation: LMPT, Fédération Denis Poisson, Tours; Mathematical Institute and Hertford College, Oxford
Address at time of publication: Hertford College, Oxford OX1 3BW, UK
Email: chrusciel@maths.ox.ac.uk

Gregory J. Galloway
Affiliation: Department of Mathematics, University of Miami
Address at time of publication: Coral Gables, Florida 33124
Email: galloway@math.miami.edu

Daniel Pollack
Affiliation: Department of Mathematics, University of Washington
Address at time of publication: Box 354350, Seattle, Washington 98195-4350, USA
Email: pollack@math.washington.edu

DOI: https://doi.org/10.1090/S0273-0979-2010-01304-5
Received by editor(s): September 11, 2008
Received by editor(s) in revised form: November 6, 2008
Published electronically: July 30, 2010
Additional Notes: Support by the Banff International Research Station (Banff, Canada), and by Institut Mittag-Leffler (Djursholm, Sweden) is gratefully acknowledged. The research of the second author has been supported in part by an NSF grant DMS 0708048.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society