Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF

Book Information

Author: Roger Hart
Title: The Chinese roots of linear algebra
Additional book information Johns Hopkins University Press, Baltimore, Maryland, 2011, xiv+286 pp., ISBN 978-0-8018-9755-9, US $65.00


References [Enhancements On Off] (What's this?)

  • 1. David E. Rowe, New trends and old images in the history of mathematics, Vita mathematica (Toronto, ON, 1992; Quebec City, PQ, 1992) MAA Notes, vol. 40, Math. Assoc. America, Washington, DC, 1996, pp. 3–16. MR 1391731 (97d:01002)
  • 2. John von Neumann, The mathematician, The Works of the Mind, The University of Chicago Press, Chicago, Ill., 1947, pp. 180–196. Edited for the Committee on Social Thought by Robert B. Heywood. MR 0021929 (9,130f)
  • 3. I. Grattan-Guinness, The mathematics of the past: distinguishing its history from our heritage, Historia Math. 31 (2004), no. 2, 163–185 (English, with English and Portuguese summaries). MR 2055640 (2005e:01029), 10.1016/S0315-0860(03)00032-6
  • 4. Joseph W. Dauben, Chinese mathematics, The mathematics of Egypt, Mesopotamia, China, India, and Islam, Princeton Univ. Press, Princeton, NJ, 2007, pp. 187–384. MR 2368472
  • 5. Yan Li and Shi Ran Du, Chinese mathematics, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1987. A concise history; Translated from the Chinese and with a preface by John N. Crossley and Anthony W.-C. Lun; With a foreword by Joseph Needham. MR 932966 (90m:01003)
  • 6. J.-C. Martzloff, Histoire des mathématiques chinoise, Masson, Paris, 1987, A History of Chinese Mathematics (Translated by S. S. Wilson). Springer, Berlin, 1997.
  • 7. Carl Meyer, Matrix analysis and applied linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. With 1 CD-ROM (Windows, Macintosh and UNIX) and a solutions manual (iv+171 pp.). MR 1777382
  • 8. Karine Chemla and Shuchun Guo, Les neuf chapitres, Dunod, Paris, 2004 (French). Le classique mathématique de la Chine ancienne et ses commentaires. [The mathematical classic of ancient China and its commentaries]; With a preface by Geoffrey Lloyd. MR 2111394 (2005h:01004)
  • 9. Kangshen Shen, John N. Crossley, and Anthony W.-C. Lun, The nine chapters on the mathematical art, Oxford University Press, New York; Science Press, Beijing, 1999. Companion and commentary; With forewords by Wentsün Wu and Ho Peng Yoke. MR 1740507 (2001g:01012)
  • 10. J. Brennan, NSF proposal preparation, Notices Amer. Math. Soc. 54 (2007), no. 9, 1153-1157.
  • 11. D. A. Grier, When computers were humans, Princeton Univ. Press, 2005.
  • 12. J. Buteo, Logistica, Paris, 1560.
  • 13. A. Heeffer, From the second unknown to the symbolic equation, Philosophical Aspects of Symbolic Reasoning in Early Modern Mathematics (A. Heeffer and M. Van Dyck, eds.), College Publications, London, 2011, pp. 57-101.
  • 14. J. F. Grcar, How ordinary elimination became Gaussian elimination, Historia Math. 38 (2011), no. 2, 163-218.
  • 15. -, Mathematicians of Gaussian ellimination, Notices Amer. Math. Soc. 58 (2011), no. 6.
  • 16. I. Newton, Universal arithmetick, Senex, Taylor, et al., London, 1720.
  • 17. F. Chiò, Mémoire sur les fonctions connues sous le nom de résultantes ou de déterminants, Turin, 1853.
  • 18. L. E. Fuller and J. D. Logan, On the evaluation of determinants by Chiò's method, College Math. J. 6 (1975), no. 1, 8-10.
  • 19. Erwin H. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian elimination, Math. Comp. 22 (1968), 565–578. MR 0226829 (37 #2416), 10.1090/S0025-5718-1968-0226829-0
  • 20. Steven C. Althoen and Renate McLaughlin, Gauss-Jordan reduction: a brief history, Amer. Math. Monthly 94 (1987), no. 2, 130–142. MR 874013 (88d:01017), 10.2307/2322413
  • 21. Victor J. Katz, Who is the Jordan of Gauss-Jordan?, Math. Mag. 61 (1988), no. 2, 99–100. MR 934825 (89f:01034), 10.2307/2690039


Review Information

Reviewer: Joseph F. Grcar
Affiliation: 6059 Castlebrook Drive; Castro Valley, California 94552-1645
Email: jfgrcar@gmail.com
Journal: Bull. Amer. Math. Soc. 49 (2012), 585-590
DOI: http://dx.doi.org/10.1090/S0273-0979-2011-01341-6
PII: S 0273-0979(2011)01341-6
Published electronically: June 7, 2011
Review copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.