Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: D. A. Timashev
Title: Homogeneous spaces and equivariant embeddings
Additional book information: Encyclopaedia of Mathematical Sciences, Vol. 138, Invariant Theory and Transformation Groups, 8, Springer, Heidelberg, 2011, xxii+253 pp., ISBN 978-3-642-18398-0

References [Enhancements On Off] (What's this?)

  • [B57] Marcel Berger, Les espaces symétriques noncompacts, Ann. Sci. École Norm. Sup. (3) 74 (1957), 85-177 (French). MR 0104763 (21 #3516)
  • [BH07] William Barker and Roger Howe, Continuous symmetry: from Euclid to Klein, American Mathematical Society, Providence, RI, 2007. MR 2362745 (2008k:51001)
  • [B52] Armand Borel, Les espaces hermitiens symétriques (French). Séminaire Bourbaki 1951/52.
  • [B56] Armand Borel, Groupes linéaires algébriques, Ann. of Math. (2) 64 (1956), 20-82 (French). MR 0093006 (19,1195h)
  • [B98] Armand Borel, Semisimple groups and Riemannian symmetric spaces, Texts and Readings in Mathematics, vol. 16, Hindustan Book Agency, New Delhi, 1998. MR 1661166 (2000e:53063)
  • [B01] Armand Borel, Essays in the history of Lie groups and algebraic groups, History of Mathematics, vol. 21, American Mathematical Society, Providence, RI, 2001. MR 1847105 (2002g:01010)
  • [BJ06] Armand Borel and Lizhen Ji, Compactifications of symmetric and locally symmetric spaces, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 2006. MR 2189882 (2007d:22030)
  • [BL52] Armand Borel and André Lichnerowicz, Espaces riemanniens et hermitiens symétriques, C. R. Acad. Sci. Paris 234 (1952), 2332-2334 (French). MR 0048134 (13,986c)
  • [C13] Élie Cartan, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. France 41 (1913), 53-96 (French). MR 1504700
  • [C23] Élie Cartan , Sur un théorème fundamental de M. H. Weyl. J. Math. Pures Appl. (9) 2 (1923), 167-192.
  • [C26] Élie Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 54 (1926), 214-264 (French). MR 1504900
  • [C27a] Élie Cartan, Sur une classe remarquable d'espaces de Riemann. II, Bull. Soc. Math. France 55 (1927), 114-134 (French). MR 1504909
  • [C27b] Élie Cartan, Sur certaines formes Riemanniennes remarquables des géométries à groupe fondamental simple, Ann. Sci. École Norm. Sup. (3) 44 (1927), 345-467 (French). MR 1509283
  • [C29] Élie Cartan, Sur la détermination d'un système orthogonal complet dans un espace de Riemann symétrique clos. Rend. Circ. Mat. Palermo 53 (1929), 217-252.
  • [C30] Élie Cartan, La théorie finis et continus et l'Analysis Situs. Mém. Sci. Math. XLII, Gauthier-Villars, Paris, 1930.
  • [C32] Élie Cartan, Les espaces riemanniens symétriques. Verh. Internat. Congr. Math. (1932), 152-161.
  • [C35] Élie Cartan, Sur les domaines bornés homogeènes de l'espace de $ n$ variables complexes. Abb. Math. Sem. Univ. Hamburg 11 (1935), 116-162.
  • [CC52] S. S. Chern and C. Chevalley, Élie Cartan and his mathematical work, Bull. Amer. Math. Soc. 58 (1852), 217-250.
  • [C47] Claude Chevalley, Algebraic Lie algebras, Ann. of Math. (2) 48 (1947), 91-100. MR 0019603 (8,435d)
  • [CT46] Claude Chevalley and Hsio-Fu Tuan, On algebraic Lie algebras, Proc. Nat. Acad. Sci. U.S.A. 31 (1945), 195-196. MR 0012279 (7,4a)
  • [EJ08] S. Evens and B. F. Jones, On the wonderful compactification. Lecture note, arXiv:0801.0456v1.
  • [HC55] Harish-Chandra, Representations of semisimple Lie groups. IV, Amer. J. Math. 77 (1955), 743-777. MR 0072427 (17,282c)
  • [H78] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978. MR 514561 (80k:53081)
  • [HÓ97] Joachim Hilgert and Gestur Ólafsson, Causal symmetric spaces: geometry and harmonic analysis, Perspectives in Mathematics, vol. 18, Academic Press Inc., San Diego, CA, 1997. MR 1407033 (97m:43006)
  • [H97] A. Hurwitz, Über die Erzeugung der Invarianten durch Integration. Nachr. Kgl. Gew. Wiss. Göttingen, Math.-Phys. Klasse 1897, 71-90.
  • [K85] Soji Kaneyuki, On classification of para-Hermitian symmetric spaces, Tokyo J. Math. 8 (1985), no. 2, 473-482. MR 827002 (88c:32045a), https://doi.org/10.3836/tjm/1270151228
  • [K03] Soji Kaneyuki, Compactification of parahermitian symmetric spaces and its applications. II. Stratifications and automorphism groups, J. Lie Theory 13 (2003), no. 2, 535-563. MR 2003159 (2004k:32036)
  • [KMOT78] M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Ōshima, and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. (2) 107 (1978), no. 1, 1-39. MR 485861 (81f:43013), https://doi.org/10.2307/1971253
  • [K90] Friedrich Knop, Weylgruppe und Momentabbildung, Invent. Math. 99 (1990), 1-23.
  • [K91] Friedrich Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, pp. 225-249. MR 1131314 (92m:14065)
  • [KW65a] Adam Korányi and Joseph A. Wolf, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. (2) 81 (1965), 265-288. MR 0174787 (30 #4980)
  • [KW65b] Joseph A. Wolf and Adam Korányi, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899-939. MR 0192002 (33 #229)
  • [KN64] Shoshichi Kobayashi and Tadashi Nagano, On filtered Lie algebras and geometric structures. I, J. Math. Mech. 13 (1964), 875-907. MR 0168704 (29 #5961)
  • [L26] H. Levy, Forma canonica dei $ ds^2$ per i quali si annullano i simboli di Riemann a cinque indici. Rend. Acc. Lincei 3 (1926), 65-69.
  • [L88] S. Lie, Theorie der Transformation Gruppen I, II, III. Unter mitwirkung von F. Engels, Leipzig 1888, 1890, 1893.
  • [L69] Ottmar Loos, Symmetric spaces. I: General theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0239005 (39 #365a)
  • [LV83] D. Luna and Th. Vust, Plongements d'espaces homogènes, Comment. Math. Helv. 58 (1983), no. 2, 186-245 (French). MR 705534 (85a:14035), https://doi.org/10.1007/BF02564633
  • [M92] George W. Mackey, The scope and history of commutative and noncommutative harmonic analysis, History of Mathematics, vol. 5, American Mathematical Society, Providence, RI, 1992. MR 1171011 (93g:22006)
  • [M71] Hans Maaß, Siegel's modular forms and Dirichlet series, Lecture Notes in Mathematics, vol. 216, Springer-Verlag, Berlin, 1971. MR 0344198 (49 #8938)
  • [N97] Hiêú Nguyêñ, Weakly symmetric spaces and bounded symmetric domains, Transform. Groups 2 (1997), no. 4, 351-374. MR 1486036 (98k:53067), https://doi.org/10.1007/BF01234540
  • [Ó91] G. Ólafsson, Symmetric spaces of Hermitian type, Differential Geom. Appl. 1 (1991), no. 3, 195-233. MR 1244444 (94g:22034), https://doi.org/10.1016/0926-2245(91)90001-P
  • [Ó00] Gestur Ólafsson, Analytic continuation in representation theory and harmonic analysis, Global analysis and harmonic analysis (Marseille-Luminy, 1999) Sémin. Congr., vol. 4, Soc. Math. France, Paris, 2000, pp. 201-233 (English, with English and French summaries). MR 1822362 (2002d:22014)
  • [ÓP12] G. Ólafsson and A. Pasquale, Ramanujan's Master theorem for the hypergeometric Fourier transform on root systems. Preprint, arXiv:1211.0024.
  • [O78] Toshio Ōshima, A realization of Riemannian symmetric spaces, J. Math. Soc. Japan 30 (1978), no. 1, 117-132. MR 0477175 (57 #16716)
  • [O83] Toshio Ōshima, A definition of boundary values of solutions of partial differential equations with regular singularities, Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 1203-1230. MR 723467 (86d:35009), https://doi.org/10.2977/prims/1195182027
  • [OS80] Toshio Ōshima and Jirō Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math. 57 (1980), no. 1, 1-81. MR 564184 (81k:43014), https://doi.org/10.1007/BF01389818
  • [P99] D. I. Panyushev, Complexity and rank of actions in invariant theory, J. Math. Sci.95 (1999), 1925-1985.
  • [PW27] F. Peter and H. Weyl, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann. 97 (1927), no. 1, 737-755 (German). MR 1512386, https://doi.org/10.1007/BF01447892
  • [Sa60] Ichirô Satake, On representations and compactifications of symmetric Riemannian spaces, Ann. of Math. (2) 71 (1960), 77-110. MR 0118775 (22 #9546)
  • [S80] Ichirô Satake, Algebraic structures of symmetric domains, Kanô Memorial Lectures, vol. 4, Iwanami Shoten, Tokyo, 1980. MR 591460 (82i:32003)
  • [S84] Henrik Schlichtkrull, Hyperfunctions and harmonic analysis on symmetric spaces, Progress in Mathematics, vol. 49, Birkhäuser Boston Inc., Boston, MA, 1984. MR 757178 (86g:22021)
  • [S24] I. Schur, Neue Anwendungen der Integralrechnung auf Probleme der Invariantentheorie. I, II. Sitzungsber. Preuss. Akad. Wiss. Berlin 1924, 189-208, 297-321.
  • [S56] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47-87. MR 0088511 (19,531g)
  • [T97] D. A. Timashëv, Classification of $ G$-manifolds of complexity $ 1$, Izv. Ross. Akad. Nauk Ser. Mat. 61 (1997), no. 2, 127-162 (Russian, with Russian summary); English transl., Izv. Math. 61 (1997), no. 2, 363-397. MR 1470147 (98h:14058), https://doi.org/10.1070/im1997 v061n02ABEH000119
  • [T11] Dmitry A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, vol. 138, Springer, Heidelberg, 2011. Invariant Theory and Algebraic Transformation Groups, 8. MR 2797018 (2012e:14100)
  • [W55a] André Weil, On algebraic groups of transformations, Amer. J. Math. 77 (1955), 355-391. MR 0074083 (17,533e)
  • [W55b] André Weil, On algebraic groups and homogeneous spaces, Amer. J. Math. 77 (1955), 493-512. MR 0074084 (17,533f)
  • [W24] H. Weyl, Zur Theorie der Darstellung der einfachen kontinuierlichen Gruppen, Sitzungsber. Preuss. Akad. Wiss. Berline, 1924, 338-345.
  • [W25] H. Weyl, Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen. I, II, II und Nachtrag, Math. Zeitschr. 23 (1925), 271-309, 24 (1926), 328-376, 377-395. 789-791.
  • [W26] H. Weyl, Zur Darstellungstheorie und Invariantenabzählung der Projektiven, der Komplex- und der Drehungsgruppe, Acta Math. 48 (1926), no. 3-4, 255-278 (German). MR 1555225, https://doi.org/10.1007/BF02565334
  • [W69] Joseph A. Wolf, The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121-1237. MR 0251246 (40 #4477)
  • [W72] Wolf, Joseph A., The fine structure of hermitian symmetric spaces, Symmetric Spaces (W. Boothby and G. Weiss, eds.), Marcel Dekker, New York, 1972. MR 0404716 (53 #8516)
  • [W11] Joseph A. Wolf, Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011. MR 2742530 (2011j:53001)
  • [W07] Joseph A. Wolf, Harmonic analysis on commutative spaces, Mathematical Surveys and Monographs, vol. 142, American Mathematical Society, Providence, RI, 2007. MR 2328043 (2008f:22008)
  • [Y02] O. S. Yakimova, Weakly symmetric Riemannian manifolds with reductive isometry group, Math. Sb. 195 (2004), no. 4, 143-160. MR 1934062 (2004b:53076)
  • [Y05] Oksana Yakimova, Gelfand pairs, Bonner Mathematische Schriften [Bonn Mathematical Publications], 374, Universität Bonn Mathematisches Institut, Bonn, 2005. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2004. MR 2206354 (2006m:22018)

Review Information:

Reviewer: Gestur Ólafsson
Affiliation: Department of Mathematics Louisiana State University
Email: olafsson@math.lsu.edu
Journal: Bull. Amer. Math. Soc. 51 (2014), 349-359
MSC (2010): Primary 14M17; Secondary 14L30, 14M27
DOI: https://doi.org/10.1090/S0273-0979-2013-01430-7
Published electronically: September 18, 2013
Additional Notes: The author acknowledges the support of NSF Grant DMS-1101337 during the preparation of this article.
Review copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
American Mathematical Society