Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



Earth's carbon cycle: A mathematical perspective

Author: Daniel H. Rothman
Journal: Bull. Amer. Math. Soc. 52 (2015), 47-64
MSC (2010): Primary 86-02; Secondary 92B99
Published electronically: September 17, 2014
MathSciNet review: 3286481
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The carbon cycle represents metabolism at a global scale. When viewed through a mathematical lens, observational data suggest that the cycle exhibits an underlying mathematical structure. This review focuses on two types of emerging results: evidence of global dynamical coupling between life and the environment, and an understanding of the ways in which smaller-scale processes determine the strength of that coupling. Such insights are relevant not only to predicting future climate but also to understanding the long-term co-evolution of life and the environment.

References [Enhancements On Off] (What's this?)

  • [1] D. Archer, The long thaw, Princeton University Press, Princeton, N.J., 2009.
  • [2] D. Archer, The global carbon cycle, Princeton University Press, Princeton, N.J., 2010.
  • [3] D. Archer, M. Eby, V. Brovkin, A. Ridgwell, L. Cao, U. Mikolajewicz, K. Caldeira, K. Matsumoto, G. Munhoven, A. Montenegro, and K. Tokos, Atmospheric lifetime of fossil fuel carbon dioxide, Annual Review of Earth and Planetary Sciences 37 (2009), 117-134 (English).
  • [4] D. Archer, A. Winguth, D. Lea, and N. Mahowald, What caused the glacial/interglacial atmospheric pCO$ _2$ cycles?, Reviews of Geophysics 38 (2000), no. 2, 159-189.
  • [5] S. Arrhenius, On the influence of carbonic acid in the air upon the temperature of the ground, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41 (1896), no. 251, 237-276.
  • [6] J. Atchison and J. A. C. Brown, The lognormal distribution, Cambridge University Press, 1963.
  • [7] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers, McGraw Hill Book Company, New York, 1978.
  • [8] A. Berger and M. F. Loutre, Precession, eccentricity, obliquity, insolation, and paleoclimates, Long-Term Climatic Variations (J.-C Duplessy and M.-T. Spyridakis, eds.), NATO ASI Series, vol. 122, Springer-Verlag, Heidelberg, 1994, pp. 107-151.
  • [9] R. A. Berner, Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling, Proceedings of the National Academy of Sciences USA 99 (2002), no. 7, 4172-4177.
  • [10] R. A. Berner, The Phanerozoic carbon cycle: $ \mbox {CO}_2$ and $ \mbox {O}_2$, Oxford University Press, New York, 2004.
  • [11] J. N. Betts and H. D. Holland, The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen, Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section) 97 (1991), 5-18.
  • [12] T. A. Boden, G. Marland, and R. J. Andres, Global, regional, and national fossil-fuel $ \mbox {CO}_2$ emissions, Tech. report, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, 2013, doi 10.3334/CDIAC/00001_V2013.
  • [13] B. Bolin and H. Rodhe, A note on the concepts of age distribution and transit time in natural reservoirs, Tellus 25 (1973), 58-62.
  • [14] T. Bosak, A. H. Knoll, and A. P. Petroff, The meaning of stromatolites, Annual Review of Earth and Planetary Sciences 41 (2012), 21-44.
  • [15] B. P. Boudreau and B. R. Ruddick, On a reactive continuum representation of organic matter diagenesis, American Journal of Science 291 (1991), 507-538.
  • [16] W. S. Broecker and T. H. Peng, Gas-exchange rates between air and sea, Tellus 26 (1974), no. 1-2, 21-35 (English).
  • [17] S. D. Burgess, S. A. Bowring, and S.-Z. Shen, High-precision timeline for Earth's most severe extinction, Proceedings of the National Academy of Sciences 111 (2014), no. 9, 3316-3321.
  • [18] C. Cao, G. D. Love, L. E. Hays, W. Wang, S. Shen, and R. E. Summons, Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event, Earth and Planetary Science Letters 281 (2009), no. 3-4, 188 - 201.
  • [19] D. C. Catling and M. W. Claire, How Earth's atmosphere evolved to an oxic state: a status report, Earth and Planetary Science Letters 237 (2005), no. 1-2, 1-20.
  • [20] K. I. Currie, G. Brailsford, S. Nichol, A. Gomez, R. Sparks, K. R. Lassey, and K. Riedel, Tropospheric $ ^{14}$$ \mbox {CO}_2$ at Wellington, New Zealand: the world's longest record, Biogeochemistry (2009), 5-22.
  • [21] E. R. M. Druffel, P. M. Williams, J. E. Bauer, and J. R. Ertel, Cycling of dissolved and particulate organic matter in the open ocean, Journal of Geophysical Research 97 (1992), 15639-15659.
  • [22] S. Edvardsson, K. G. Karlsson, and M. Engholm, Accurate spin axes and solar system dynamics: Climatic variations for the earth and mars, Astronomy and Astrophysics 384 (2002), no. 2, 689-701.
  • [23] D. H. Erwin, Extinction: How life on Earth nearly ended 250 million years ago, Princeton University Press, Princeton, N.J., 2006.
  • [24] C. L. Follett, Heterogeneous reservoirs in the marine carbon cycle, Ph.D. thesis, Massachusetts Institute of Technology, 2014.
  • [25] D. C. Forney and D. H. Rothman, Common structure in the heterogeneity of plant-matter decay, Journal of The Royal Society Interface 9 (2012), no. 74, 2255-2267.
  • [26] P. Friedlingstein, P. Cox, R. Betts, L. Bopp, W. Von Bloh, V. Brovkin, P. Cadule, S. Doney, M. Eby, I. Fung, et al., Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison, Journal of Climate 19 (2006), no. 14, 3337-3353.
  • [27] Y. Gelinas, J. A. Baldock, and J. I. Hedges, Organic carbon composition of marine sediments: effect of oxygen exposure on oil generation potential, Science 294 (2001), 145-148.
  • [28] C. Goldblatt, T. M. Lenton, and A. J. Watson, Bistability of atmospheric oxygen and the Great Oxidation, Nature 443 (2006), 683-686.
  • [29] D. A. Hansell, C. A. Carlson, D. J. Repeta, and R. Schlitzer, Dissolved organic matter in the ocean: A controversy stimulates new insights, Oceanography 22 (2009), 202-211.
  • [30] M. E. Harmon, W. L. Silver, B. Fasth, H. Chen, I. C. Burke, W. J. Parton, S. C. Hart, and W. S. Currie, Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison, Global Change Biology 15 (2009), no. 5, 1320-1338.
  • [31] H. E. Hartnett, R. G. Keil, J. I. Hedges, and A. H. Devol, Influence of oxygen exposure time on organic carbon preservation in continental margin sediments, Nature 391 (1998), 572-574.
  • [32] J. M. Hayes, H. Strauss, and A. J. Kaufman, The abundance of $ ^{13}$C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma, Chemical Geology 161 (1999), 103-125.
  • [33] J. M. Hayes and J. R. Waldbauer, The carbon cycle and associated redox processes through time, Philosophical Transactions of the Royal Society B: Biological Sciences 361 (2006), no. 1470, 931-950.
  • [34] J. I. Hedges, Global biogeochemical cycles: progress and problems, Marine Chemistry 39 (1992), 67-93.
  • [35] J. I. Hedges and R. G. Keil, Sedimentary organic matter preservation: an assessment and speculative synthesis, Marine Chemistry 49 (1995), 81-115.
  • [36] H. D. Holland, The chemistry of the atmosphere and oceans, John Wiley & Sons, New York, 1978.
  • [37] W. T. Holser, M. Schidlowski, F. T. Mackenzie, and J. B. Maynard, Biogeochemical cycles of carbon and sulfur, Chemical Cycles in the Evolution of the Earth (C. B. Gregor, R. M. Garrels, F. T. Mackenzie, and J. B. Maynard, eds.), John Wiley & Sons, New York, 1988, pp. 105-173.
  • [38] Leo P. Kadanoff, Statistical physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. Statics, dynamics and renormalization. MR 1772071
  • [39] C. D. Keeling, The Suess effect: $ ^{13}$$ \mbox {Carbon}$- $ ^{14}$$ \mbox {Carbon}$ interrelations, Environment International 2 (1979), no. 4, 229-300.
  • [40] R. G. Keil and L. M. Mayer, Mineral matrices and organic matter, Treatise on Geochemistry (Second Edition) (H. D. Holland and K. T. Turekian, eds.), vol. 12, Elsevier, Oxford, 2nd ed., 2014, pp. 337-359.
  • [41] A. H. Knoll, Life on a young planet, Princeton University Press, Princeton, 2003.
  • [42] A. H. Knoll, R. K. Bambach, D. E. Canfield, and J. P. Grotzinger, Comparative Earth history and late Permian mass extinction, Science 273 (1996), 452-457.
  • [43] Andrew H. Knoll, Richard K. Bambach, Jonathan L. Payne, Sara Pruss, and Woodward W. Fischer, Paleophysiology and end-Permian mass extinction, Earth and Planetary Science Letters 256 (2007), no. 3-4, 295-313.
  • [44] C. Korte and H. W. Kozur, Carbon-isotope stratigraphy across the Permian-Triassic boundary: A review, Journal of Asian Earth Sciences 39 (2010), 215-235.
  • [45] C. Kuehn, A mathematical framework for critical transitions: Bifurcations, fast-slow systems and stochastic dynamics, Physica D: Nonlinear Phenomena 240 (2011), no. 12, 1020-1035.
  • [46] T. A. Laakso and D. P Schrag, Regulation of atmospheric oxygen during the Proterozoic, Earth and Planetary Science Letters 388 (2014), 81-91.
  • [47] C. M. Marshall, Explaining the Cambrian ``explosion'' of animals, Annu. Rev. Earth Planet. Sci. 34 (2006), 355-284.
  • [48] J. J. Middelburg, A simple rate model for organic matter decomposition in marine sediments, Geochimica et Cosmochimica Acta 53 (1989), 1577-1581.
  • [49] J. J. Middelburg and F. J. R. Meysman, Burial at sea, Science (Washington) 316 (2007), no. 5829, 1325-1326.
  • [50] M. Milankovič, Canon of insolation and the ice-age problem, Zavod za udžbenike i nastavna sredstva, 1998.
  • [51] Elliott W. Montroll and Michael F. Shlesinger, On 1/𝑓 noise and other distributions with long tails, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), no. 10, 3380–3383. MR 657549
  • [52] R. A. Muller and G. J. Macdonald, Ice ages and astronomical causes, Springer, New York, 2000.
  • [53] J. D. Murray, Mathematical biology, 2nd ed., Biomathematics, vol. 19, Springer-Verlag, Berlin, 1993. MR 1239892
  • [54] L. Och and G. A. Shields, The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling, Earth-Science Reviews 110 (2012), 26-57.
  • [55] D. E. Ogden and N. H. Sleep, Explosive eruption of coal and basalt and the end-Permian mass extinction, Proceedings of the National Academy of Sciences 109 (2012), no. 1, 59-62.
  • [56] J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J. M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, and M. Stievenard, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature 399 (1999), no. 6735, 429-436.
  • [57] Raymond T. Pierrehumbert, Principles of planetary climate, Cambridge University Press, Cambridge, 2010. MR 2778154
  • [58] A. Plonka, Dispersive kinetics, Kluwer, Boston, 2001.
  • [59] D. M. Raup and J. J. Sepkoski Jr, Mass extinctions in the marine fossil record, Science 215 (1982), no. 4539, 1501-1503.
  • [60] M. K. Reichow, M. S. Pringle, A. I. Al'Mukhamedov, M. B. Allen, V. L. Andreichev, M. M. Buslov, C. E. Davies, G. S. Fedoseev, J. G. Fitton, S. Inger, A. Ya. Medvedev, C. Mitchell, V. N. Puchkov, I. Yu. Safonova, R. A. Scott, and A. D. Saunders, The timing and extent of the eruption of the Siberian traps large igneous province: Implications for the end-Permian environmental crisis, Earth and Planetary Science Letters 277 (2009), no. 1-2, 9-20.
  • [61] J. Ross and M. O. Vlad, Nonlinear kinetics and new approaches to complex reaction mechanisms, Annual Review of Physical Chemistry 50 (1999), 51-78.
  • [62] D. H. Rothman and D. C. Forney, Physical model for the decay and preservation of marine organic carbon, Science 316 (2007), 1325-1328.
  • [63] D. H. Rothman, G. P. Fournier, K. L. French, E. J. Alm, E. A. Boyle, C. Cao, and R. E. Summons, Methanogenic burst in the end-Permian carbon cycle, Proceedings of the National Academy of Sciences 111 (2014), no. 15, 5462-5467.
  • [64] D. H. Rothman, J. M. Hayes, and R. E. Summons, Dynamics of the Neoproterozoic carbon cycle, Proceedings of the National Academy of Sciences USA 100 (2003), 8124-8129.
  • [65] M. Schidlowski, Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept, Precambrian Research 106 (2001), 117-134.
  • [66] D. P. Schrag, J. A. Higgins, F. A. Macdonald, and D. T. Johnston, Authigenic carbonate and the history of the global carbon cycle, Science 339 (2013), no. 6119, 540-543.
  • [67] S.-Z. Shen, J. L. Crowley, Y. Wang, S. A. Bowringo, D. H. Erwin, P. M. Sadler, C.-Q Cao, D. H. Rothman, C. M. Henderson, J. Ramezani, H. Zhang, Y. Shen, X.-D. Wang, W. Wang, Lin Mu, W.-Z. Li, Y.-G. Tang, X.-L. Liu, L.-J Liu, Y. Zeng, Y.-F Jiang, and Y.-G. Jin, Calibrating the end-Permian mass extinction, Science 334 (2011), 1367-1372.
  • [68] G. Shields and J. Veizer, Precambrian marine carbonate isotope database: Version 1.1, Geochemistry Geophysics Geosystems 3 (2002), Art. No. 1031.
  • [69] W. Shockley, On the statistics of individual variations of productivity in research laboratories, Proceedings of the IRE 45 (1957), no. 3, 279-290.
  • [70] D. M. Sigman and E. A. Boyle, Glacial/interglacial variations in atmospheric carbon dioxide, Nature 407 (2000), no. 6806, 859-869.
  • [71] T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, New York, 2013.
  • [72] H. E. Suess, Radiocarbon concentration in modern wood, Science 122 (1955), no. 3166, 415-417.
  • [73] H. Svensen, S. Planke, A. G. Polozov, N. Schmidbauer, F. Corfu, Y. Y. Podladchikov, and B. Jamtveit, Siberian gas venting and the end-Permian environmental crisis, Earth and Planetary Science Letters 277 (2009), 490-500.
  • [74] P. Tans and R. Keeling, May 2014, NOAA/ESRL ( and Scripps Institution of Oceanography (
  • [75] Y. A. Vetter, J. W. Deming, P. A. Jumars, and B. B. Krieger-Brockett, A predictive model of bacterial foraging by means of freely released extracellular enzymes, Microbial Ecology 36 (1998), 75-92.
  • [76] M. O. Vlad, D. L. Huber, and J. Ross, Rate statistics and thermodynamic analogies for relaxation processes in systems with static disorder: Application to stretched exponential, J. Chem. Phys. 106 (1997), 4157-4167.
  • [77] O. H. Walliser (ed.), Global events and event stratigraphy in the Phanerozoic, Springer, Berlin, 1996.
  • [78] C. Wunsch, The spectral description of climate change including the 100 ky energy, Climate Dynamics 20 (2003), 353-363.
  • [79] S. A. Zimov, E. A. G. Schuur, and F. S. Chapin III, Permafrost and the global carbon budget, Science 312 (2006), no. 5780, 1612-1613.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 86-02, 92B99

Retrieve articles in all journals with MSC (2010): 86-02, 92B99

Additional Information

Daniel H. Rothman
Affiliation: Lorenz Center, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received by editor(s): May 30, 2014
Published electronically: September 17, 2014
Additional Notes: I would like to thank T. Bosak, C. Follett, and D. Forney for collaborations on problems discussed in Section \ref{sec:decomposition}. This work was supported by NASA Astrobiology (NNA08CN84A and NNA13AA90A) and NSF (OCE-0930866 and EAR-1338810).
Article copyright: © Copyright 2014 American Mathematical Society