Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Limit shapes, real and imagined


Author: Andrei Okounkov
Journal: Bull. Amer. Math. Soc. 53 (2016), 187-216
MSC (2010): Primary 60F10, 81T13
DOI: https://doi.org/10.1090/bull/1512
Published electronically: August 20, 2015
MathSciNet review: 3474306
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This is an introductory discussion of limit shapes, in particular for random partitions and stepped surfaces, and of their applications to supersymmetric gauge theories.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1-28. MR 721448 (85e:58041), https://doi.org/10.1016/0040-9383(84)90021-1
  • [2] Thierry Bodineau, Roberto H. Schonmann, and Senya Shlosman, 3D crystal: how flat its flat facets are?, Comm. Math. Phys. 255 (2005), no. 3, 747-766. MR 2135451 (2006a:82010), https://doi.org/10.1007/s00220-004-1283-4
  • [3] A. Borodin, V. Gorin, and A. Guionnet, Gaussian asymptotics of discrete $ \beta $-ensembles, arXiv:1505.03760.
  • [4] Alexander Braverman, Instanton counting via affine Lie algebras. I. Equivariant $ J$-functions of (affine) flag manifolds and Whittaker vectors, Algebraic structures and moduli spaces, CRM Proc. Lecture Notes, vol. 38, Amer. Math. Soc., Providence, RI, 2004, pp. 113-132. MR 2095901 (2005k:14020)
  • [5] A. Braverman and P. Etingof, Instanton counting via affine Lie algebras II: from Whittaker vectors to the Seiberg-Witten prepotential, math.AG/0409441.
  • [6] R. Cerf, The Wulff crystal in Ising and percolation models, Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6-24, 2004; With a foreword by Jean Picard. Lecture Notes in Mathematics, vol. 1878, Springer-Verlag, Berlin, 2006. MR 2241754 (2008d:82032)
  • [7] Raphaël Cerf and Richard Kenyon, The low-temperature expansion of the Wulff crystal in the 3D Ising model, Comm. Math. Phys. 222 (2001), no. 1, 147-179. MR 1853867 (2002i:82046), https://doi.org/10.1007/s002200100505
  • [8] Henry Cohn, Richard Kenyon, and James Propp, A variational principle for domino tilings, J. Amer. Math. Soc. 14 (2001), no. 2, 297-346 (electronic). MR 1815214 (2002k:82038), https://doi.org/10.1090/S0894-0347-00-00355-6
  • [9] Henry Cohn, Michael Larsen, and James Propp, The shape of a typical boxed plane partition, New York J. Math. 4 (1998), 137-165 (electronic). MR 1641839 (99j:60011)
  • [10] Eric D'Hoker and D. H. Phong, Lectures on supersymmetric Yang-Mills theory and integrable systems, Theoretical physics at the end of the twentieth century (Banff, AB, 1999), CRM Ser. Math. Phys., Springer, New York, 2002, pp. 1-125. MR 1882556 (2004d:81122)
  • [11] R. Dobrushin, R. Kotecký, and S. Shlosman, Wulff construction, A global shape from local interaction; Translated from the Russian by the authors. Translations of Mathematical Monographs, vol. 104, American Mathematical Society, Providence, RI, 1992. MR 1181197 (93k:82002)
  • [12] Roland L. Dobrushin and Senya B. Shlosman, Droplet condensation in the Ising model: moderate deviations point of view, Probability and phase transition (Cambridge, 1993) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 420, Kluwer Acad. Publ., Dordrecht, 1994, pp. 17-34. MR 1283173 (95d:82018)
  • [13] S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1990. Oxford Science Publications. MR 1079726 (92a:57036)
  • [14] Nick Dorey, Timothy J. Hollowood, Valentin V. Khoze, and Michael P. Mattis, The calculus of many instantons, Phys. Rep. 371 (2002), no. 4-5, 231-459. MR 1941102 (2004c:81163), https://doi.org/10.1016/S0370-1573(02)00301-0
  • [15] Timothy Hollowood, Amer Iqbal, and Cumrun Vafa, Matrix models, geometric engineering and elliptic genera, J. High Energy Phys. 3 (2008), 069, 81. MR 2391051 (2009m:81235), https://doi.org/10.1088/1126-6708/2008/03/069
  • [16] Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870 (98g:14012)
  • [17] Dmitry Ioffe and Senya Shlosman, Ising model fog drip: the first two droplets, In and out of equilibrium. 2, Progr. Probab., vol. 60, Birkhäuser, Basel, 2008, pp. 365-381. MR 2477391 (2010i:82032), https://doi.org/10.1007/978-3-7643-8786-0_18
  • [18] D. Ioffe and S. Shlosman, Ising model fog drip: the puddle, in preparation.
  • [19] P. W. Kasteleyn, Graph theory and crystal physics, Graph Theory and Theoretical Physics, Academic Press, London, 1967, pp. 43-110. MR 0253689 (40 #6903)
  • [20] Richard Kenyon, Height fluctuations in the honeycomb dimer model, Comm. Math. Phys. 281 (2008), no. 3, 675-709. MR 2415464 (2009d:82059), https://doi.org/10.1007/s00220-008-0511-8
  • [21] Richard Kenyon and Andrei Okounkov, Limit shapes and the complex Burgers equation, Acta Math. 199 (2007), no. 2, 263-302. MR 2358053 (2008h:60038), https://doi.org/10.1007/s11511-007-0021-0
  • [22] Richard Kenyon, Andrei Okounkov, and Scott Sheffield, Dimers and amoebae, Ann. of Math. (2) 163 (2006), no. 3, 1019-1056. MR 2215138 (2007f:60014), https://doi.org/10.4007/annals.2006.163.1019
  • [23] B. F. Logan and L. A. Shepp, A variational problem for random Young tableaux, Advances in Math. 26 (1977), no. 2, 206-222. MR 1417317 (98e:05108), https://doi.org/10.1016/0001-8708(77)90030-5
  • [24] Grigory Mikhalkin, Amoebas of algebraic varieties and tropical geometry, Different faces of geometry, Int. Math. Ser. (N. Y.), vol. 3, Kluwer/Plenum, New York, 2004, pp. 257-300. MR 2102998 (2005m:14110), https://doi.org/10.1007/0-306-48658-X_6
  • [25] S. Miracle-Sole, Surface tension, step free energy and facets in the equilibrium crystal, J. Stat. Phys. 79, 183-214 (1995).
  • [26] Salvador Miracle-Sole, Facet shapes in a Wulff crystal, Mathematical results in statistical mechanics (Marseilles, 1998) World Sci. Publ., River Edge, NJ, 1999, pp. 83-101. MR 1886243
  • [27] Hiraku Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999. MR 1711344 (2001b:14007)
  • [28] Hiraku Nakajima and Kōta Yoshioka, Instanton counting on blowup. I. 4-dimensional pure gauge theory, Invent. Math. 162 (2005), no. 2, 313-355. MR 2199008 (2007b:14027a), https://doi.org/10.1007/s00222-005-0444-1
  • [29] Hiraku Nakajima and Kōta Yoshioka, Lectures on instanton counting, Algebraic structures and moduli spaces, CRM Proc. Lecture Notes, vol. 38, Amer. Math. Soc., Providence, RI, 2004, pp. 31-101. MR 2095899 (2005m:14016)
  • [30] Hiraku Nakajima and Kōta Yoshioka, Instanton counting on blowup. II. $ K$-theoretic partition function, Transform. Groups 10 (2005), no. 3-4, 489-519. MR 2183121 (2007b:14027b), https://doi.org/10.1007/s00031-005-0406-0
  • [31] Nikita A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003), no. 5, 831-864. MR 2045303 (2005i:53109)
  • [32] N. Nekrasov, in preparation.
  • [33] Nikita A. Nekrasov and Andrei Okounkov, Seiberg-Witten theory and random partitions, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 525-596. MR 2181816 (2008a:81227), https://doi.org/10.1007/0-8176-4467-9_15
  • [34] N. Nekrasov and V. Pestun, Seiberg-Witten geometry of four dimensional $ N=2$ quiver gauge theories, arXiv:1211.2240
  • [35] N. Nekrasov, V. Pestun, and S. Shatashvili, Quantum geometry and quiver gauge theories, arXiv:1312.6689.
  • [36] Nikita Nekrasov and Sergey Shadchin, ABCD of instantons, Comm. Math. Phys. 252 (2004), no. 1-3, 359-391. MR 2104883 (2005m:81308), https://doi.org/10.1007/s00220-004-1189-1
  • [37] B. Nienhuis, H. J. Hilhorst, and H. W. J. Blöte, Triangular SOS models and cubic-crystal shapes, J. Phys. A 17 (1984), no. 18, 3559-3581. MR 772340 (85m:82049)
  • [38] Andrei Okounkov, The uses of random partitions, XIVth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2005, pp. 379-403. MR 2227852 (2007c:05013)
  • [39] Andrei Okounkov, Random surfaces enumerating algebraic curves, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, pp. 751-768. MR 2185779 (2007b:14122)
  • [40] Andrei Okounkov, Random partitions and instanton counting, International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 687-711. MR 2275703 (2008h:81167)
  • [41] A. Okounkov, Noncommutative geometry of random surfaces, arXiv:0907.2322.
  • [42] Mikael Passare and Hans Rullgøard, Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope, Duke Math. J. 121 (2004), no. 3, 481-507. MR 2040284 (2005a:32005), https://doi.org/10.1215/S0012-7094-04-12134-7
  • [43] N. Seiberg and E. Witten, Erratum: ``Electric-magnetic duality, monopole condensation, and confinement in $ N=2$ supersymmetric Yang-Mills theory'', Nuclear Phys. B 430 (1994), no. 2, 485-486. MR 1303306 (95m:81202b), https://doi.org/10.1016/0550-3213(94)00449-8
  • [44] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in $ N=2$ supersymmetric QCD, Nuclear Phys. B 431 (1994), no. 3, 484-550. MR 1306869 (95m:81203), https://doi.org/10.1016/0550-3213(94)90214-3
  • [45] M. L. Sodin and P. M. Yuditskiĭ, Functions that deviate least from zero on closed subsets of the real axis, Algebra i Analiz 4 (1992), no. 2, 1-61 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 4 (1993), no. 2, 201-249. MR 1182392 (93k:41012)
  • [46] S. B. Shlosman, The Wulff construction in statistical mechanics and combinatorics, Uspekhi Mat. Nauk 56 (2001), no. 4(340), 97-128 (Russian, with Russian summary); English transl., Russian Math. Surveys 56 (2001), no. 4, 709-738. MR 1861442 (2003c:82018), https://doi.org/10.1070/RM2001v056n04ABEH000417
  • [47] Morikazu Toda, Theory of nonlinear lattices, Springer Series in Solid-State Sciences, vol. 20, Springer-Verlag, Berlin-New York, 1981. Translated from the Japanese by the author. MR 618652 (82k:58052b)
  • [48] Karen K. Uhlenbeck, The Chern classes of Sobolev connections, Comm. Math. Phys. 101 (1985), no. 4, 449-457. MR 815194 (87f:58028)
  • [49] A. M. Vershik, Statistical mechanics of combinatorial partitions, and their limit configurations, Funktsional. Anal. i Prilozhen. 30 (1996), no. 2, 19-39, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 30 (1996), no. 2, 90-105. MR 1402079 (99d:82008), https://doi.org/10.1007/BF02509449
  • [50] A. Vershik and S. Kerov, Asymptotics of the Plancherel measure of the symmetric group and the limit form of Young tableaux, Soviet Math. Dokl. 18, 1977, 527-531.
  • [51] A. M. Vershik and S. V. Kerov, Asymptotic behavior of the maximum and generic dimensions of irreducible representations of the symmetric group, Funktsional. Anal. i Prilozhen. 19 (1985), no. 1, 25-36, 96 (Russian). MR 783703 (86k:11051)
  • [52] Edward Witten, Dynamics of quantum field theory, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 1119-1424. MR 1701615 (2001a:81003)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 60F10, 81T13

Retrieve articles in all journals with MSC (2010): 60F10, 81T13


Additional Information

Andrei Okounkov
Affiliation: Department of Mathematics, Columbia University, New York; Higher School of Economics, Moscow, Russia; and Institute for Problems of Information Transmission, Moscow, Russia
Email: okounkov@math.colunbia.edu

DOI: https://doi.org/10.1090/bull/1512
Received by editor(s): March 27, 2015
Published electronically: August 20, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society