Taimanov's surface evolution and

Bäcklund transformations for curves

Authors:
Oscar Garay and Joel Langer

Journal:
Conform. Geom. Dyn. **3** (1999), 37-49

MSC (1991):
Primary 35Q51, 35Q53, 53A05, 53A35, 53A30

DOI:
https://doi.org/10.1090/S1088-4173-99-00043-0

Published electronically:
March 25, 1999

MathSciNet review:
1684040

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Taimanov's evolution of conformally parametrized surfaces in Euclidean space by the modified Novikov-Veselov equation is interpreted here (in the revolution case) using hyperbolic geometry and Bäcklund transformations for curves.

**[C-I]**A. Calini and T. Ivey, Bäcklund transformations and knots of constant torsion,*J. Knot Theory and its Ramifications***7**(1998), p. 719. CMP**99:01****[Ch]**B. Y. Chen, Some conformal invariants of submanifolds and their applications,*Bol. Un. Mat. Ital.*(4)**10**(1974). MR**51:6663****[G-P]**R. Goldstein and D. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane,*Phys. Rev. Lett.***67**(1991), p. 3203. MR**92g:58050****[Iv]**T. Ivey, Helices, Hasimoto surfaces and Bäcklund transformations, Preprint (1998).**[Ko]**B. Konopelchenko, Induced surfaces and their integrable dynamics,*Studies in Appl. Math.***96**(1996), p. 9. MR**96i:53011****[La]**G. Lamb, Solitons and the motion of helical curves,**37**(1976), p. 235. MR**57:13250****[L-P 1]**J. Langer and R. Perline, Poisson geometry of the filament equation,*J. Nonlinear Sci.***1**(1991), p. 71. MR**92k:58118****[L-P 2]**J. Langer and R. Perline, Local geometric invariants of integrable evolution equations,*J. Math. Phys.***35**(1994), p. 1732. MR**95c:58095****[L-P 3]**J. Langer and R. Perline, Curve motion inducing modified Korteweg-de Vries systems,*Phys. Lett. A***239**(1998), pp. 37-49. CMP**98:10****[L-S 1]**J. Langer and D. Singer, The total squared curvature of closed curves,*J. Diff. Geom.***20**(1984), pp. 37-49. MR**86i:58030****[L-S 2]**J. Langer and D. Singer, Curves in the hyperbolic plane and mean curvature of tori in 3-space,*Bull. London Math Soc.***16**(1984), pp. 37-49. MR**85k:53006****[Ro]**C. Rogers, Bäcklund transformations in soliton theory, in*Soliton theory: a survey of results*, ed. A. P. Fordy, St. Martin's Press, 1990. CMP**91:07****[Ta 1]**I. Taimanov, Modified Novikov-Veselov equation and differential geometry of surfaces, Preprint November 1995 (da-ga 9511005),*Translations Amer. Math. Soc.*, Ser. 2, 179, 1997. MR**98c:53071****[Ta 2]**I. Taimanov, Surfaces of revolution in terms of solitons,*Ann. Global Analysis and Geom.***15**(1997), pp. 37-49. CMP**98:04****[We]**J. Weiner, On a problem of Chen, Willmore, et al.,*Indiana Univ. Math. J.***27**(1978), pp. 37-49. MR**57:7466**

Retrieve articles in *Conformal Geometry and Dynamics of the American Mathematical Society*
with MSC (1991):
35Q51,
35Q53,
53A05,
53A35,
53A30

Retrieve articles in all journals with MSC (1991): 35Q51, 35Q53, 53A05, 53A35, 53A30

Additional Information

**Oscar Garay**

Affiliation:
Department of Mathematics, Universidad Pais Vasco, Bilbao, Spain

Email:
mtpgabeo@lg.ehu.es

**Joel Langer**

Affiliation:
Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106

Email:
jxl6@po.cwru.edu

DOI:
https://doi.org/10.1090/S1088-4173-99-00043-0

Received by editor(s):
October 28, 1998

Published electronically:
March 25, 1999

Additional Notes:
We wish to acknowledge the support of the Departamento De Educacion, Universidades E Investigacion, Gobierno Vasco, for J. Langer’s visit.

Article copyright:
© Copyright 1999
American Mathematical Society