Taimanov's surface evolution and

Bäcklund transformations for curves

Authors:
Oscar Garay and Joel Langer

Journal:
Conform. Geom. Dyn. **3** (1999), 37-49

MSC (1991):
Primary 35Q51, 35Q53, 53A05, 53A35, 53A30

Published electronically:
March 25, 1999

MathSciNet review:
1684040

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Taimanov's evolution of conformally parametrized surfaces in Euclidean space by the modified Novikov-Veselov equation is interpreted here (in the revolution case) using hyperbolic geometry and Bäcklund transformations for curves.

**[C-I]**A. Calini and T. Ivey, Bäcklund transformations and knots of constant torsion,*J. Knot Theory and its Ramifications***7**(1998), p. 719. CMP**99:01****[Ch]**Bang-yen Chen,*Some conformal invariants of submanifolds and their applications*, Boll. Un. Mat. Ital. (4)**10**(1974), 380–385 (English, with Italian summary). MR**0370436****[G-P]**Raymond E. Goldstein and Dean M. Petrich,*The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane*, Phys. Rev. Lett.**67**(1991), no. 23, 3203–3206. MR**1135964**, 10.1103/PhysRevLett.67.3203**[Iv]**T. Ivey, Helices, Hasimoto surfaces and Bäcklund transformations, Preprint (1998).**[Ko]**B. G. Konopelchenko,*Induced surfaces and their integrable dynamics*, Stud. Appl. Math.**96**(1996), no. 1, 9–51. MR**1365273**, 10.1002/sapm19969619**[La]**G. L. Lamb Jr.,*Solitons and the motion of helical curves*, Phys. Rev. Lett.**37**(1976), no. 5, 235–237. MR**0473584****[L-P 1]**Joel Langer and Ron Perline,*Poisson geometry of the filament equation*, J. Nonlinear Sci.**1**(1991), no. 1, 71–93. MR**1102831**, 10.1007/BF01209148**[L-P 2]**Joel Langer and Ron Perline,*Local geometric invariants of integrable evolution equations*, J. Math. Phys.**35**(1994), no. 4, 1732–1737. MR**1267918**, 10.1063/1.530567**[L-P 3]**J. Langer and R. Perline, Curve motion inducing modified Korteweg-de Vries systems,*Phys. Lett. A***239**(1998), pp. 37-49. CMP**98:10****[L-S 1]**Joel Langer and David A. Singer,*The total squared curvature of closed curves*, J. Differential Geom.**20**(1984), no. 1, 1–22. MR**772124****[L-S 2]**Joel Langer and David Singer,*Curves in the hyperbolic plane and mean curvature of tori in 3-space*, Bull. London Math. Soc.**16**(1984), no. 5, 531–534. MR**751827**, 10.1112/blms/16.5.531**[Ro]**C. Rogers, Bäcklund transformations in soliton theory, in*Soliton theory: a survey of results*, ed. A. P. Fordy, St. Martin's Press, 1990. CMP**91:07****[Ta 1]**Iskander A. Taimanov,*Modified Novikov-Veselov equation and differential geometry of surfaces*, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, vol. 179, Amer. Math. Soc., Providence, RI, 1997, pp. 133–151. MR**1437161****[Ta 2]**I. Taimanov, Surfaces of revolution in terms of solitons,*Ann. Global Analysis and Geom.***15**(1997), pp. 37-49. CMP**98:04****[We]**Joel L. Weiner,*On a problem of Chen, Willmore, et al*, Indiana Univ. Math. J.**27**(1978), no. 1, 19–35. MR**0467610**

Retrieve articles in *Conformal Geometry and Dynamics of the American Mathematical Society*
with MSC (1991):
35Q51,
35Q53,
53A05,
53A35,
53A30

Retrieve articles in all journals with MSC (1991): 35Q51, 35Q53, 53A05, 53A35, 53A30

Additional Information

**Oscar Garay**

Affiliation:
Department of Mathematics, Universidad Pais Vasco, Bilbao, Spain

Email:
mtpgabeo@lg.ehu.es

**Joel Langer**

Affiliation:
Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106

Email:
jxl6@po.cwru.edu

DOI:
https://doi.org/10.1090/S1088-4173-99-00043-0

Received by editor(s):
October 28, 1998

Published electronically:
March 25, 1999

Additional Notes:
We wish to acknowledge the support of the Departamento De Educacion, Universidades E Investigacion, Gobierno Vasco, for J. Langer’s visit.

Article copyright:
© Copyright 1999
American Mathematical Society