Restrictions on harmonic morphisms

Author:
M. T. Mustafa

Journal:
Conform. Geom. Dyn. **3** (1999), 102-115

MSC (1991):
Primary 58E20, 53C20

Published electronically:
August 16, 1999

MathSciNet review:
1716571

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider horizontally (weakly) conformal maps between Riemannian manifolds and calculate a formula for the Laplacian of the dilation of , using the language of moving frames. Applying this formula to harmonic horizontally (weakly) conformal maps or equivalently to harmonic morphisms we obtain a Weitzenböck formula similar to an earlier result of the author (J. London Math. Soc. (2) **57** (1998), 746-756), and hence vanishing results for harmonic morphisms from compact manifolds of positive curvature. Further, a method is developed to obtain restrictions on harmonic morphisms from some *non-compact* and *non-positively curved* domains. Finally, a discussion of restrictions on harmonic morphisms between simply connected space forms is given.

**1.**Paul Baird,*Harmonic maps with symmetry, harmonic morphisms and deformations of metrics*, Research Notes in Mathematics, vol. 87, Pitman (Advanced Publishing Program), Boston, MA, 1983. MR**716320****2.**Paul Baird and John C. Wood,*Harmonic morphisms and conformal foliations by geodesics of three-dimensional space forms*, J. Austral. Math. Soc. Ser. A**51**(1991), no. 1, 118–153. MR**1119693****3.**Bryant, R. L.: Harmonic morphisms with fibres of dimension one,*Communications in Analysis and Geometry*(to appear).**4.**J. Eells and L. Lemaire,*A report on harmonic maps*, Bull. London Math. Soc.**10**(1978), no. 1, 1–68. MR**495450**, 10.1112/blms/10.1.1**5.**J. Eells and L. Lemaire,*Another report on harmonic maps*, Bull. London Math. Soc.**20**(1988), no. 5, 385–524. MR**956352**, 10.1112/blms/20.5.385**6.**James Eells Jr. and J. H. Sampson,*Harmonic mappings of Riemannian manifolds*, Amer. J. Math.**86**(1964), 109–160. MR**0164306****7.**James Eells and Paul Yiu,*Polynomial harmonic morphisms between Euclidean spheres*, Proc. Amer. Math. Soc.**123**(1995), no. 9, 2921–2925. MR**1273489**, 10.1090/S0002-9939-1995-1273489-4**8.**Bent Fuglede,*Harmonic morphisms between Riemannian manifolds*, Ann. Inst. Fourier (Grenoble)**28**(1978), no. 2, vi, 107–144 (English, with French summary). MR**499588****9.**S. I. Goldberg, T. Ishihara, and N. C. Petridis,*Mappings of bounded dilatation of Riemannian manifolds*, J. Differential Geometry**10**(1975), no. 4, 619–630. MR**0390964****10.**Sigmundur Gudmundsson,*Harmonic morphisms between spaces of constant curvature*, Proc. Edinburgh Math. Soc. (2)**36**(1993), no. 1, 133–143. MR**1200192**, 10.1017/S0013091500005940**11.**Sigmundur Gudmundsson,*Harmonic morphisms from complex projective spaces*, Geom. Dedicata**53**(1994), no. 2, 155–161. MR**1307290**, 10.1007/BF01264019**12.**Gudmundsson, S.:*The Bibliography of Harmonic Morphisms*,

http://www.maths.lth.se/matematiklu/personal/sigma/harmonic/bibliography.html.**13.**Tôru Ishihara,*A mapping of Riemannian manifolds which preserves harmonic functions*, J. Math. Kyoto Univ.**19**(1979), no. 2, 215–229. MR**545705****14.**Atsushi Kasue and Takumi Washio,*Growth of equivariant harmonic maps and harmonic morphisms*, Osaka J. Math.**27**(1990), no. 4, 899–928. MR**1088189**

Atsushi Kasue and Takumi Washio,*Errata to: “Growth of equivariant harmonic maps and harmonic morphisms” [Osaka J. Math. 27 (1990), no. 4, 899–928; MR1088189 (92d:58043)]*, Osaka J. Math.**29**(1992), no. 2, 419–420. MR**1173999****15.**Joachim Lohkamp,*Metrics of negative Ricci curvature*, Ann. of Math. (2)**140**(1994), no. 3, 655–683. MR**1307899**, 10.2307/2118620**16.**Montaldo, S.: Harmonic maps and morphisms via moving frames, Lecture notes, University of Leeds (1997).**17.**Mustafa, M. T.: A Bochner technique for harmonic morphisms,*J. London Math. Soc.*(2)**57**(1998) 746-756. CMP**99:05****18.**Mustafa, M. T. and Wood, J. C.: Harmonic morphisms from three-dimensional Euclidean and spherical space forms,*Algebras, Groups and Geometries***15**(1998) 155-172. CMP**99:09****19.**Ye-Lin Ou and John C. Wood,*On the classification of quadratic harmonic morphisms between Euclidean spaces*, Algebras Groups Geom.**13**(1996), no. 1, 41–53. MR**1392037****20.**T. J. Willmore,*Riemannian geometry*, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. MR**1261641****21.**J. C. Wood,*Harmonic morphisms, foliations and Gauss maps*, Complex differential geometry and nonlinear differential equations (Brunswick, Maine, 1984) Contemp. Math., vol. 49, Amer. Math. Soc., Providence, RI, 1986, pp. 145–184. MR**833811**, 10.1090/conm/049/833811**22.**John C. Wood,*Harmonic maps and morphisms in 4 dimensions*, Geometry, topology and physics (Campinas, 1996) de Gruyter, Berlin, 1997, pp. 317–333. MR**1605260**

Retrieve articles in *Conformal Geometry and Dynamics of the American Mathematical Society*
with MSC (1991):
58E20,
53C20

Retrieve articles in all journals with MSC (1991): 58E20, 53C20

Additional Information

**M. T. Mustafa**

Affiliation:
Assistant Professor, Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Distt. Swabi, N.W.F.P., Pakistan

Email:
mustafa@giki.edu.pk

DOI:
https://doi.org/10.1090/S1088-4173-99-00026-0

Keywords:
Harmonic morphisms,
harmonic maps,
Bochner technique

Received by editor(s):
December 29, 1997

Received by editor(s) in revised form:
June 8, 1999

Published electronically:
August 16, 1999

Article copyright:
© Copyright 1999
American Mathematical Society